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SUMMARY

Predictivemodels of signaling networks are essential
for understanding cell population heterogeneity and
designing rational interventions in disease. However,
using computational models to predict heterogeneity
of signaling dynamics is often challenging because
of the extensive variability of biochemical parame-
ters across cell populations. Here, we describe a
maximum entropy-based framework for inference
of heterogeneity in dynamics of signaling networks
(MERIDIAN). MERIDIAN estimates the joint probabil-
ity distribution over signaling network parameters
that is consistent with experimentally measured
cell-to-cell variability of biochemical species. We
apply the developed approach to investigate the
response heterogeneity in the EGFR/Akt signaling
network. Our analysis demonstrates that a significant
fraction of cells exhibits high phosphorylated Akt
(pAkt) levels hours after EGF stimulation. Our find-
ings also suggest that cells with high EGFR levels
predominantly contribute to the subpopulation of
cells with high pAkt activity. We also discuss how
MERIDIAN can be extended to accommodate
various experimental measurements.

INTRODUCTION

Signaling cascades in genetically identical cells often respond to

extracellular stimuli in a heterogeneous manner (Raj and van Ou-

denaarden, 2008). This heterogeneity arises largely because of

cell-to-cell variability in biochemical signaling parameters, such

as reaction rates and chemical species abundances (Albeck

et al., 2008; Spencer et al., 2009; Meyer et al., 2012; Llamosi

et al., 2016; Kallenberger et al., 2017). The response variability
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across cells can have important functional consequences, for

example, in multimodal developmental decisions (Chastanet

et al., 2010) and fractional killing of cancer cells treated with

chemotherapeutic compounds (Albeck et al., 2008; Spencer

et al., 2009, Gerosa et al., 2019). Therefore, the ability to predict

heterogeneity in cell populations is important for predicting het-

erogeneous outcomes of biological stimulations and in

designing rational intervention in disease states (Niepel

et al., 2009).

Several experimental techniques such as flow cytometry,

immunofluorescence (Wu and Singh, 2012), and live cell assays

(Meyer et al., 2012) have been developed to investigate the cell-

to-cell variability of biochemical species abundances. However,

it is often difficult to estimate the distribution of biochemical

parameters consistent with these experimental measurements.

The reasons for this challenge are primarily 3-fold. First,

biochemical parameters such as protein abundances and reac-

tion rates vary substantially across cells in a population (Raj and

vanOudenaarden, 2008). For example, previous studies have re-

ported the coefficients of variation of protein abundances in the

range of 0.1–0.6 (Niepel et al., 2009). Consequently, effective

rates of signaling reactions also vary substantially between cells

(Chung et al., 1997; Meyer et al., 2012). Second, multivariate

parameter distributions can potentially have complex shapes.

For example, abundance distributions of key signaling proteins

and enzyme often exhibit multimodality (Frei et al., 2016). Finally,

available single-cell measurements are typically not sufficient to

uniquely infer the underlying parameter variability—the chal-

lenge usually referred to as ‘‘parameter non-identifiability’’

(Banks et al., 2012).

Over the last decade, several computational methods have

been developed to estimate the joint distribution of parameters

consistent with experimentally measured cell-to-cell variability

of biochemical species (Waldherr et al., 2009; Hasenauer et al.,

2011, 2014; Zechner et al., 2012, 2014; Loos et al., 2018; Wald-

herr, 2018; Loos and Hasenauer, 2019). Most of these methods

circumvent the ill-posed inverse problem of estimation of the

parameter distribution (Banks et al., 2012) by making specific
.
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Figure 1. Illustration of the MERIDIAN Inference Approach

Cell-to-cell abundance variability of protein ‘‘a’’ is measured at four time points

t1, t2, t3, and t4. From the single-cell data, we determine the fraction 4ik of cells

that populate the kth abundance bin in the ith experimental measurement (time).

The histograms show 4ik acrossmultiple experimental measurements. We find

PðqÞ using the maximum entropy approach while requiring that the corre-

sponding distribution P½xaðt; qÞ� over dynamic trajectories of xaðt; qÞ simulta-

neously reproduces all experimentally measured abundance bin fractions.
ad hoc choices about the underlying distribution. For example,

Hasenauer et al. (2011, 2014) (see also Waldherr et al., 2009;

Loos et al., 2018) approximate the parameter distribution as a

linear combination of predefined functions. Waldherr et al.

2009 approximate the parameter distribution using Latin hyper-

cube sampling (LHS). Similarly, Zechner et al. (2012, 2014) as-

sume that the parameters are distributed according to a log-

normal or gamma distribution. The limitations arising due to

these specific choices of parameter distributions remain

unknown.

Building on our previous work (Dixit, 2013; Eydgahi et al.,

2013), we developed MERIDIAN, a maximum entropy-based

framework for inference of heterogeneity in dynamics of

signaling networks. Instead of enforcing a specific functional

form of the parameter distribution a priori, MERIDIAN uses

data-derived constraints to derive it de novo. The maximum

entropy principle (Dixit et al., 2018) was first introduced more

than a century ago in statistical physics. Notably, later work es-

tablished the maximum entropy approach as an inference

method with principled axiomatic justifications (Shore and John-

son, 1980). Among all candidate distributions that agree with the

imposed constraints, the maximum entropy approach selects

the one with the least amount of biases. Maximum entropy-

based approaches have been successfully applied to a variety

of biological problems, including protein structure prediction

(Weigt et al., 2009), protein sequence evolution (Mora et al.,

2010), neuron firing dynamics (Schneidman et al., 2006), molec-

ular simulations (Dixit et al., 2015; Tiwary and Berne, 2016), and

dynamics of biochemical reaction networks (Dixit, 2018).

In the paper, following a description of the key ideas behind

MERIDIAN, we illustrate its performance using synthetic data.

We then use MERIDIAN to study the heterogeneity in the

signaling network leading to phosphorylation of protein kinase

B (Akt). Epidermal growth factor (EGF)-induced Akt phosphory-

lation governs key intracellular processes (Manning and Toker,
2017) including metabolism, apoptosis, and cell cycle entry.

Because of its central role in mammalian signaling, aberrations

in the Akt pathway are implicated in multiple disorders (Manning

and Toker, 2017). We apply MERIDIAN to infer the distribution

over signaling parameters using previously collected experi-

mental data on phosphorylated Akt (pAkt) (Lyashenko et al.,

2018) and data on cell surface EGF receptor (sEGFR) abundance

measured in MCF10A cells. We demonstrate that the parameter

distribution inferred usingMERIDIAN allows us to accurately pre-

dict the cell-to-cell heterogeneity of pAkt levels at late time

points after stimulation as well as the heterogeneity of sEGFRs

in response to EGF signal. Finally, we discuss possible general-

izations of the developed framework to accommodate various

experimental measurements.

RESULTS

Outline of MERIDIAN
We consider a signaling network comprising N chemical species

whose intracellular abundances we denote by x = fx1; x2; .;

xNg. We assume that the molecular interactions among the spe-

cies are described by a system of ordinary differential equations

d

dt
xðt; qÞ = fðx; qÞ (Equation 1)

where fðx; qÞ is a function of species abundances x and

q= fq1; q2;.g is a vector of parameters describing the dynamics

of the signaling networks. We denote by xaðt; qÞ the solution of

Equation 1 for species ‘‘a’’ at time t with specific parameters q;

which we assume to vary across cells.

The MERIDIAN inference approach is illustrated in Figure 1.

We use experimentally measured cell-to-cell variability of protein

species ‘‘a’’ at multiple experimental conditions, for example,

several time points (illustrated by histograms in Figure 1), to

constrain the parameter distribution PðqÞ: Specifically, we first

quantify the experimentally measured biochemical species vari-

ability by estimating bin fractions4ik. In our notation, the index i

specifies the experimental measurement, for example, measure-

ment time and measured species, and k indicates the abun-

dance distribution bin number for a given condition. Every

distinct dynamical trajectory xaðt; qÞ (illustrated by red and blue

curves in Figure 1) generated by specific parameter values q

passes through a unique set of abundance bins (red curve

through red bins and blue curve through blue bins in Figure 1)

at multiple experimental conditions. Using MERIDIAN, we find

a corresponding probability distribution PðqÞ over parameters

such that the corresponding distribution over dynamic trajec-

tories P½xaðt; qÞ� is consistent with all experimentally measured

abundance bin fractions. Below, we present the approach that

we use to derive the functional form of PðqÞ.

Derivation of PðqÞ using MERIDIAN
For simplicity, we first consider the case when the distribution

of cell-to-cell variability in one species xa is available only at a

single time point t (for example, t = t1 in Figure 1). We denote

by f= ff1;f2; .;fBg the fraction of cells whose experimental

measurement of xa lies in individual abundance bins (numbered

from 1 to B). Here, given that we are considering only one
Cell Systems 10, 204–212, February 26, 2020 205



experimental measurement, we use, for brevity, only one index

to indicate the bin fractions. We also assume that there are no

experimental errors in determining f. Later, we demonstrate

how it is possible to incorporate known experimental errors

both in the inference procedure and in making predictions using

PðqÞ:
Given a parameter distribution PðqÞ; the predicted fractions

j= fj1;j2; .;jBg can be obtained as follows. Using Markov

chain Monte Carlo (MCMC), we generate multiple parameter

sets q from PðqÞ. For each q, we solve Equation 1 and find

xaðt; qÞ; i.e., the predicted value of the species abundance at

time t. Then, using the samples from the ensemble of trajec-

tories, we estimate the predicted jk as the fraction of sampled

trajectories for which xaðt; qÞ passed through the kth bin.

Mathematically:

jk =

Z
Ikðxaðt; qÞÞPðqÞdq (Equation 2)

where Ik(x) is an indicator function i.e., Ik(x) is equal to one if x lies

in the kth bin and zero otherwise.

The central idea behind MERIDIAN is to find the maximum

entropy distribution PðqÞ over parameters such that all pre-

dicted fractions jk agree with those from experimental

measurements, 4k. Formally, we seek PðqÞ with the maximum

entropy

S = �
Z

PðqÞ log PðqÞ
qðqÞ dq (Equation 3)

subject to normalization ðR PðqÞdq = 1Þ and data-derived con-

straints jk = 4k for all k. Here, qðqÞ plays a role similar to the

prior distribution in Bayesian statistics (Caticha and Preuss,

2004). In this work, we choose qðqÞ to be a uniform distribution

within literature-derived ranges of parameters, but other choices

can be used as well.

To impose aforementioned constraints and perform the en-

tropy maximization, we use the method of Lagrange multipliers.

To that end, we write the Lagrangian function

L = S+ h

�Z
PðqÞdq� 1

�
�
XB
k = 1

lk

�Z
Ikðxaðt; qÞÞPðqÞdq�fk

�

(Equation 4)

where h is the Lagrange multiplier associated with normaliza-

tion and lk are the Lagrangemultipliers associatedwith bin frac-

tions 4k. By differentiating Equation 4 with respect to PðqÞ and
setting the derivative to zero, we obtain the Gibbs-Boltz-

mann form:

PðqjlÞ = 1

U
qðqÞexp

 
�
XB
k = 1

lk Ikðxaðt; qÞÞ
!
; (Equation 5)

where U is the partition function that normalizes the probability

distribution. Equation 5 is a key conceptual foundation of this

work. We use it to estimate the parameter distribution based

on user-specified constraints.

The aforementioned derivations are restricted to using single-

cell data measured at one time point. In the STAR Methods, we
206 Cell Systems 10, 204–212, February 26, 2020
discuss the generalization of the approach when abundances of

multiple species are measured at several time points. The details

of the convex numerical optimization problem of Lagrange mul-

tipliers, MERIDIAN-based predictions, and possible generaliza-

tions of MERIDIAN to accommodate various experimental mea-

surements can also be found in the STAR Methods.

Finally, we note that given the high-dimensional nature of the

parameter space, in many computational models of biological

systems, the collected data are usually not sufficient to fully

constrain the multidimensional parameter distribution (Banks

et al., 2012). As a result, the parameter distribution inferred

by MERIDIAN reflects both the true biological variability in pa-

rameters as well as parameter non-identifiability. Moreover, the

relative contribution of non-identifiability to the inferred param-

eter distribution will likely increase with an increase in the dimen-

sionality of the parameter space.
MERIDIAN Performance on Synthetic Data
Before applying MERIDIAN to investigate experimentally

measured cell-to-cell variability, we decided to first validate

the approach with synthetic data. To that end, we used a previ-

ously published model of the EGFR/Akt pathway (Chen et al.,

2009) to generate in silico single-cell data for five different per-

turbations of the pathway. These perturbations represented

several known cancer-related pathologies of the signaling

network. Using the pathway model, we then investigated

whether MERIDIAN can accurately predict single-cell distribu-

tions of biochemical species by comparing the predicted distri-

butions with synthetically generated single-cell data.
Computational Model of the EGFR/Akt Signaling
Network
Signal transduction in the EGFR/Akt network is illustrated in Fig-

ure 2. Following stimulation of cells with EGF, it binds to cell sur-

face EGFRs (sEGFRs). Ligand-bound receptors then dimerize

with other ligand-bound receptors as well as ligand-free recep-

tors. EGFR dimers phosphorylate each other, and phosphory-

lated receptors (active receptors, pEGFRs) on the cell surface

lead to downstream phosphorylation of Akt (pAkt). Both active

and unphosphorylated (inactive) receptors are internalized with

different rates from the cell surface because of receptor endocy-

tosis. After addition of EGF to the extracellular medium, pAkt

levels first increase transiently within minutes and then, as a

result of receptor endocytosis, both pAkt and sEGFR levels

decrease within hours after EGF stimulation (Chen et al., 2009).

To explore the cell-to-cell variability in this pathway, we used

a dynamical model of EGF/EGFR-dependent Akt phosphoryla-

tion based on Chen et al. (2009). The model (see Figure 2)

includes reactions describing EGF binding to EGFR and sub-

sequent receptor dimerization, phosphorylation, dephosphory-

lation, internalization, and degradation. To keep the model rela-

tively small, we simplified pEGFR-dependent pAkt activation by

assuming a single-step activation of Akt by pEGFR (STAR

Methods). The first and second order rate constants used in

the model should be treated as effective rates, given that the

law of mass action is only an approximation to the complex inter-

actions in the EGFR/Akt pathway. The pathway model we used

had 17 chemical species and 20 parameters. See Table S1 for



Figure 2. Illustration of the EGF/EGFR

Pathway Leading to Phosphorylation of Akt

Extracellular EGF (red disc) binds to cell surface

EGFRs leading to their dimerization. Dimerized

EGFRs are autophosphorylated and lead to phos-

phorylation of Akt. Active and inactive receptors are

removed from the cell surface through internaliza-

tion into endosomes. Asterisk represents phos-

phorylation and the rate constants marked with an

asterisk are associated with phosphorylated re-

ceptors. We only show a subset of all interactions in

the model. See STAR Methods for details of the

corresponding computational model.
the list of model parameters and Table S2 for the list of model

variables. The model equations are given in the STAR Methods.

Parameter Inference Using Synthetic Data
Using synthetic multivariate parameter distributions, we gener-

ated in silico data for five different EGFR pathway parameteriza-

tions. The first parameterization represented the wild-type state

of the network inMCF10A cells. Next, we simulated four different

perturbations to the synthetic parameter distribution to repre-

sent four common cancer-related pathway pathologies. Specif-

ically, we simulated (1) EGFR overexpression (Herbst, 2004),

by increasing the rate of EGFR delivery to the cell surface, (2)

PTEN loss (Martini et al., 2014), by decreasing the rate of

dephosphorylation of pAkt, (3) decrease in EGFR downregula-

tion, by decreasing the rate of endocytosis of activated EGFRs

(Tomas et al., 2014), and (4) decrease in EGFR phosphatase

activity, by reducing the rate of EGFR dephosphorylation (Tiga-

nis, 2002) (see STAR Methods).

For each of these five parameterizations, we generated single-

cell data (for �4 3 104 in silico single cells) describing (1) pAkt

levels at 0, 5, 15, 30, and 45 min after stimulation with 0.1,

0.31, 3.16, 10, and 100 ng/mL of EGF and (2) steady-

state sEGFR levels after prolonged stimulation with 0, 1, and

100 ng/mL of EGF (180min) (STARMethods). These 24 synthetic

single-cell distributions (21 pAkt distributions and 3 sEGFR

distributions) were each binned into 15 bins. The bin sizes and

locations were chosen to cover the entire range of the observed

variability (Table S3) and a total of 15 3 24 = 360 bin fractions f

were obtained. Next, for each aforementioned parameterization,

we inferred the joint parameter distribution of the EGFR pathway

by optimizing the 360 Lagrange multipliers using MERIDIAN

(STAR Methods; Figures S1–S5).

Prediction of Single-Cell Dynamics Using the Inferred
Distribution
Using the inferred parameter distribution, we next investigated

whether single-cell pAkt distributions at early times after stimula-
Cell S
tion (up to 45min of continuous EGF stimu-

lation) could predict the late time steady-

state distributions of pAkt levels. To that

end, using the synthetic parameter distribu-

tions for each of the five parameterizations,

we sampled �4 3 104 parameter sets and

simulated single-cell pAkt levels after 3 h

of EGF stimulation across multiple EGF
doses. These represented the synthetic in silico data against

which we tested the MERIDIAN-based predictions. The MERID-

IAN predictions were generated by sampling�43 104 parameter

sets from the inferred parameter distributions (STAR Methods).

Notably, the mean values and standard deviations of pAkt

levels were accurately predicted by MERIDIAN across all five re-

alizations (the means and the standard deviations of steady-

state pAkt levels were within�7% of the in silico data, compara-

ble to the prediction accuracy with real data, see below). As

shown in Figures 3A–3C and S6, MERIDIAN accurately

predicted single-cell pAkt distributions for all five parameteriza-

tions of the pathway and across two orders of magnitude in EGF

concentration.

Using MERIDIAN to Model Experimental EGFR/Akt
Heterogeneity in MCF10A Cells
Based on the ability of MERIDIAN to predict single-cell abun-

dance distributions across several in silico parameterizations

of the EGFR/Akt pathway, we next investigated the performance

of MERIDIAN with experimental data describing single-cell het-

erogeneity in mammalian cells. Toward that end, we used previ-

ously measured cell-to-cell variability in pAkt levels at early times

after EGF stimulation inMCF10A cells (Lyashenko et al., 2018). In

addition, we also measured data describing sEGFR abundance

variability across MCF10A cells (STAR Methods). Specifically,

we used pAkt levels after stimulation with five different EGF

doses (0.1, 0.316, 3.16, 10, and 100 ng/mL) at 4 early time points

(5, 15, 30, and 45min) and sEGFR levels without EGF stimulation

and after 3 h of EGF stimulation at 1 ng/mL (STAR Methods).

Each experimentally measured distribution was binned using

11 bins; the bin sizes and locations were chosen to cover

the entire range of the observed species abundance variability

(Table S4). In total, we used 264 bin fractions and corresponding

264 Lagrange multipliers. We numerically determined the

optimal Lagrange multipliers using MERIDIAN based on the

pathway model described above (STAR Methods). It took

approximately 90 h to optimize the Lagrange multipliers.
ystems 10, 204–212, February 26, 2020 207



Figure 3. Predictions of pAkt Levels in In Sil-

ico Perturbations and Experimental Cell-to-

Cell Variability in pAkt Levels Used to Infer

the Model Parameter Distribution

(A–C) Comparison between single-cell heteroge-

neity in steady-state pAkt levels (3 h of continuous

stimulation with 1 ng/mL EGF) as observed in in

silico data (black circles) and MERIDIAN-based

predictions (dashed lines) in (A) the ‘‘wild-type’’

parametrization of the EGFR pathway (green), (B) a

perturbation representing EGFR overexpression

(blue), and (C) a perturbation representing PTEN

loss (red).

(D) The distribution of pAkt levels at 0, 5, 15, 30, and

45 min after exposure to 10 ng/mL EGF are shown.

The colored circles represent the experimentally

measured pAkt distributions used in the inference of

the parameter distribution. The black dashed lines

represent MERIDIAN-fitted distributions. The inset

shows the experimentally measured population

average pAkt levels across multiple time points.

Error bars in the inset represent population standard

deviations.
The optimal Lagrange multipliers accurately reproduced

the experimentally measured bin fractions (Pearson’s r2 = 0.9,

p < 10�10, median relative error �14%, Figure S7). Furthermore,

fitted bin fractions obtained in two independent calculations

showed excellent agreement with each other, as expected for

a convex optimization problem (Pearson r2 = 0.99, p < 10�10, Fig-

ure S8). In Figure 3D, we show the temporal profile of experimen-

tally measured cell-to-cell variability in pAkt levels (colored cir-

cles) for stimulation with 10 ng/mL EGF and the corresponding

fits (dashed black lines) based on MERIDIAN-inferred parameter

distribution. The inferred marginal distributions of the individual

model parameters are given in Figure S9, and the correlation

structure of inferred parameters is given in Table S5.

Prediction of Single-Cell Dynamics
Because Akt is a key hub of mammalian cell signaling (Manning

and Toker, 2017), sustained activity of pAkt is implicated in

diverse human diseases, such as psychiatric disorders (Gilman

et al., 2012) and cancer (Vivanco and Sawyers, 2002). Using

the developed approach, we next investigated whether we

could predict pAkt levels hours after EGF stimulation using

the parameter distribution inferred using MERIDIAN and experi-

mentally measured pAkt variability at early times after EGF stim-

ulation. To that end, we numerically sampled multiple parameter

sets using the inferred parameter distribution and for each

sampled parameter set used themodel of the EGFR/Akt network

to predict pAkt levels at late times across a range of EGF stimu-

lation levels. We then compared the predicted and experimen-

tally observed distributions of pAkt levels across cells at late

times (180 min) after sustained EGF stimulation (Figures 4A,

4B, and S10). Our simulations correctly predicted that a signifi-

cant fraction of cells have high pAkt levels even hours after stim-

ulation. For example, the predicted and observed coefficient of

variation of the pAkt distributions in cells stimulated with

10 ng/mL EGF for 180 min were in good agreement (0.41 and

0.37, respectively). Furthermore, the inferred parameter distribu-

tion accurately captured the pAkt population mean and vari-

ability (Figure 4C) at late times across four orders of magnitude
208 Cell Systems 10, 204–212, February 26, 2020
of EGF concentrations used to stimulate cells with a mean rela-

tive error of �15%.

MERIDIAN also allowed us to investigate biochemical model

parameters that significantly correlated with high pAkt levels at

steady state. Across all simulated trajectories, sEGFR levels

showed the highest correlation with pAkt levels among all recep-

tor-related parameters (Table S6, Pearson r = 0.4, EGF stimula-

tion 10 ng/mL). This suggests that cells with high EGFR levels, in

particular, predominantly contribute to the subpopulation of cells

with high steady-state pAkt activity. This insight demonstrates

how MERIDIAN can be used to gain a mechanistic understand-

ing of the main sources of cell-to-cell heterogeneity in signaling

dynamics.

We next investigated whether MERIDIAN could also predict

the heterogeneity in sEGFR levels after prolonged stimulation

with EGF. To that end, we compared the predicted and experi-

mentally measured steady-state sEGFR levels across EGF

stimulation doses (Figure 4). Similar to pAkt, the simulations

accurately captured both the population mean and variability

of the EGFR receptor levels across multiple levels of EGF stimu-

lations (Figure 4F). The simulations and experiments demon-

strated that, in agreement with the model prediction, even hours

after the growth factor stimulation there is a significant fraction of

cells with relatively high levels of sEGFR (Figures 4D and 4E).

DISCUSSION

Comparison of MERIDIAN with Previous Work
We briefly discuss below key differences between MERIDIAN

and two other previously described approaches developed to

infer parameter distributions from single-cell data: the discre-

tized Bayesian (DB) approach by Hasenauer et al. (2011) and

the Latin hypercube sampling (LHS)-based approach by Wald-

herr et al. (2009).

In the DB approach, the multidimensional parameter space is

first discretized usingCartesian grid coordinates. The joint param-

eter distribution is then expressed as a weighted sum of several

multivariate Gaussian distributions centered on the Cartesian



Figure 4. Prediction of pAkt and sEGFR Levels at Late Times after EGF Stimulation
(A and B) Experimentally measured distributions (black circles) and the corresponding computational predictions (red circles and dashed red lines) of cell-to-cell

variability in pAkt levels at 180 min after stimulation with (A) 0.1 ng/mL and (B) 10 ng/mL EGF.

(C) Experimentally measuredmean pAkt levels (black circles) and standard deviation in pAkt levels (blue circles) at 180min after sustained stimulation with EGF (x

axis) and the corresponding predictions (red circles and dashed red lines).

(D and E) Experimentally measured distributions (black circles) and the corresponding predictions (red circles and dashed red lines) of cell-to-cell variability in

sEGFR levels at 180 min after stimulation with (D) 0.125 ng/mL and (E) 0.25 ng/mL EGF.

(F) Experimentally measured mean sEGFR levels (black circles) and standard deviation in sEGFR levels (blue circles) at 180 min after sustained stimulation with

EGF (x axis) and the corresponding predictions (red circles and dashed red lines). The error bars in experimental data represent standard deviation. The error bars

in model predictions represent the estimated uncertainty.
grid points. Finally, the posterior distribution over the Gaussian

weights (and thus parameters) is obtained from the single-cell

data. A significant advantageofDB is a straightforward implemen-

tation and efficient handling of multidimensional data, in cases

when several chemical species are simultaneously measured in

single cells. However, due to its reliance on discretization of the

multidimensional parameter space, applications of DB to study

realistic signaling networks can rapidly become computationally

prohibitive. For example, using DB with 10 grid points per dimen-

sion in a 20-dimensional network parameter space will require

estimation of �10 trillion Gaussian distribution weights. In

contrast, as we demonstrated with synthetic and experimental

data, MERIDIAN can easily handle realistically sized signaling

network models with many dozens of parameters.

Waldherr et al. (2009) addressed the curse of dimensionality

faced by DB by employing the so-called LHS approach (Stein,

1987). In LHS, parameter sets are chosen from the Latin hyper-

cube: only one parameter set is allowed to be in each of themulti-

dimensional rows and columns. A potential advantage of LHS

is that it avoids computationally expensive determination of the

Lagrange multipliers. At the same time, LHS only sparsely

samples the parameter space and generally cannot assign prob-

abilities to arbitrary regions in the high-dimensional parameter
space. In contrast, a key advantage of MERIDIAN is that the

continuous density defined in Equation 5 allows us to estimate

the relative probability for all parameter regions. Finally, unlike

the LHS approach, MERIDIAN allows estimation of the uncer-

tainty in model predictions using measurement errors (STAR

Methods).

Possible Extensions of the MERIDIAN Framework
Using MERIDIAN with Inherently Stochastic Network

Models

A straightforward extension makes it possible to use the

MERIDIAN framework for signaling networks when the time evo-

lution of species abundances is intrinsically stochastic, for

example, transcriptional networks and prokaryotic signaling

networks with relatively small species abundances (Raj and

van Oudenaarden, 2008; Chastanet et al., 2010). To that end,

the definition of the predicted bin fraction can be modified to

jk =
R
pðxðt; qÞ= xjq Þdq, where pðxðt; qÞ= xjq Þ is the distribution

of x values at time t with parameters q: The species abundance

distribution can then be obtained numerically, using Gillespie’s

stochastic simulation algorithm (Gillespie, 2007) and its fast

approximations (Cao and Grima, 2018) or approximated using

moment closure techniques (Gillespie, 2009). We have
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previously implemented this logic to understand intrinsic and

extrinsic noise in a simple gene expression circuit in E. coli (Dixit,

2013).

Constraining Moments in MERIDIAN

MERIDIAN can also be used to infer parameter distributions

when, instead of the entire abundance distributions, only a few

moments are available, such as average protein abundances

measured using quantitative western blots or mass spectrom-

etry (Shi et al., 2016). For example, in the case when the popula-

tion meanm and the variance v of one species x are measured at

a fixed time point t, instead of constraining fractions jk that

represent cell-to-cell variability across different bins of the rele-

vant abundance distribution, it is possible to constrain the pop-

ulation mean m1 =
R
xðt; qÞPðqÞdq and the second moment

m2 =
R
xðt; qÞ2PðqÞdq to their experimentally measured values.

Entropy maximization can then be carried out with these con-

straints. In this case, we have

PðqÞ = 1

U
qðqÞ exp�� l1xðt; qÞ� l1xðt; qÞ2

�
(Equation 6)

Using MERIDIAN with Live Cell Imaging Data

MERIDIAN can also be extended to infer parameter distributions

from experiments where dynamics of species abundances

within single cells are continuously monitored using live cell im-

aging (Meyer et al., 2012; Kallenberger et al., 2017). For example,

if time evolution of a species x(t) is measured in nc cells from time

t = 0 to t = T. We can discretize the continuous time observations

into K discrete time measurements ft1; t2;.; tKg. At each time

point ti, one can then divide the range of observed abundances in

Bi bins. Each individual dynamical trajectory x(t) can be charac-

terized by a vector of indices xðtÞ � fB1a1 ; B2a2 ;.;BKaKg where

Biai is the index of the abundance distribution bin through which

the trajectory x(t) passed at time point ti. Given a sufficiently large

number of experimentally measured trajectories, it is then

possible to constrain the fraction of trajectories that populate a

given sequence of bins to infer the parameter distribution.
Conclusions
Cells in an isogenic population exhibit heterogeneity in part

because of heterogeneity in signaling network parameters (Al-

beck et al., 2008; Niepel et al., 2009; Spencer et al., 2009; Meyer

et al., 2012; Llamosi et al., 2016; Kallenberger et al., 2017). In

this work, we developed MERIDIAN, a maximum entropy-

based approach to infer signaling network parameter heteroge-

neity from single-cell measurements of chemical species abun-

dances. Two components contribute to the inferred parameter

distribution: (1) the true biological parameter variability due to

cell-to-cell heterogeneity and (2) the non-identifiability in

parameter estimation given the single-cell data. Consequently,

the inferred distribution is likely to be broader compared to the

true biological variability (Mukherjee et al., 2013). The non-iden-

tifiability contribution can be further minimized by (1) optimally

designing experimental conditions to reduce non-identifiability

(Bandara et al., 2009; Kreutz and Timmer, 2009) and by (2)

directly including constraints on population average measure-

ments for rate constants and other parameters of the signaling

network. Notably, the parameter distributions inferred using

MERIDIAN were predictive; MERIDIAN-based predictions of
210 Cell Systems 10, 204–212, February 26, 2020
heterogeneity in steady-state pAkt and sEGFR levels agreed

closely with the experimental data. Moreover, we showed that

insights from MERIDIAN can allow us to understand biochem-

ical parameters that are responsible for cell subpopulations of

phenotypic interest, for example, cells with high steady-state

pAkt levels predominantly corresponded to cells with high

steady-state sEGFR.

Recent developments in cytometry (Chattopadhyay et al.,

2014), single-cell mass spectrometry (Budnik et al., 2018;

Specht et al., 2019), and single-cell RNA sequencing (Saliba

et al., 2014) make it possible to simultaneously measure abun-

dances of several species in single cells. Several elegant statis-

tical approaches have been developed to reconstruct trajec-

tories of intracellular species dynamics consistent with time-

stamped single-cell abundance data (Gut et al., 2015; Mukherjee

et al., 2017a, 2017b). Complementary to these statistical

methods, MERIDIAN allows us to infer the distribution over

signaling parameters that describe mechanistic interactions in

the signaling network. Notably, the inferred parameter distribu-

tion can be used to predict the ensemble of single-cell trajec-

tories for time intervals and experimental conditions beyond

the ones used in constraining the parameter distribution.

Finally, although we applied MERIDIAN to understanding

signaling network dynamics, it can also be used in other diverse

research contexts. For example, the MERIDIAN can be applied

to computationally reconstruct the distribution of longitudinal dy-

namics from cross-sectional time snapshot data or to estimate

parameter distributions from a lower dimension in fields such

as public health, economics, and ecology (Das et al., 2015).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

In this work, we used distributions of cell-to-cell variability in phosphorylated Akt levels as well as cell surface EGFR levels. We used

the experimental data on pAkt levels previously measured in Lyashenko et al. (Lyashenko et al., 2018). sEGFR data wasmeasured for

this work. Below, we describe it briefly.

MCF 10A cells (Soule et al., 1990) were obtained from the ATCC. The cells were grown according to ATCC recommendations. We

confirmed the cell identity by short tandem repeat (STR) profiling at the Dana-Farber Cancer Institute. We tested the cells with My-

coAlert PKUS mycoplasma detection kit (Lonza) and ensured that they were free of mycoplasma infection. For the experiments, we

coated 96well plates (Thermo Fisher Scientific) with type I collagen from rat tail (Sigma-Aldrich) by incubating plates with 65microliter

of 4-mg/ml collagen I solution in PBS for two hours at room temperature. We washed the plates twice with PBS using EL406 Micro-

plate Washer Dispenser (BioTek) and sterilized them under UV light for 20 minutes prior to use. Cells were harvested during logarith-

mic growth. We dispensed 2500 cells per well into collagen-coated 96 well plates using a EL406 Microplate Washer Dispenser. We

grew the cells in 200microliter of complete medium for 24 hours. The cells were serum-starved twice in starvationmedia (DMEM/F12

lemented with 1% penicillin-streptomycin and 0.1% bovine serum albumin). Next, we incubated the cells in 200 microliter of starva-

tion media for 19 hours and again for one more hour. This time point constituted t=0 for all experiments.

We created the EGF treatment solutions by dispensing the appropriate amounts of epidermal growth factor (EGF, Peprotech) into

starvationmedia using aD300Digital Dispenser (Hewlett-Packard). To fit the parameter distributions, we used EGF concentrations of

0, 1, and 100 ng/ml for the surface EGFRmeasurements. At t=0 cells were stimulatedwith 100microliter of 33 solution and incubated

for 3 hours. To test the model predictions, we collected sEGFR distributions at 180 minutes after stimulation with 0.0078, 0.0156,

0.0312, 0.0625, 0.125, 0.25, 0.5, 1, and 100 ng/ml of EGF. All incubations were terminated by adding 100 ml of 12% formaldehyde

solution (Sigma) in phosphate buffered saline (PBS) and fixing the cells for 30 min at room temperature.

We performed all subsequent washes and treatments with the EL406 Microplate Washer Dispenser. We washed the cells twice in

PBS and permeabilized themwith 0.3%Triton X-100 (Sigma-Aldrich) in PBS for 30min at room temperature. Cells werewashed once

again in PBS, and blocked in 40 microliter of Odyssey blocking buffer (LI-COR Biotechnology) for 60 min at room temperature. Cells
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were incubated with 30 microliter of anti-EGFR antibody (Thermo Fisher Scientific, MA5-13319, 1:100) over night at 4�C. We then

washed the cells once in PBS and three time in PBS with 0.1% Tween 20 (Sigma-Aldrich; PBS-T for 5 min each and incubated

with 30 microliter of a 1:1000 dilution of Alexa Fluor 647 conjugated goat anti-rabbit or goat anti-mouse secondary antibody in Od-

yssey blocking buffer for 60 min at room temperature. Next we washed the cells two times in PBS-T, once with PBS, and stained for

30min at room temperature with whole cell stain green (Thermo Fisher Scientific) andHoechst (Thermo Fisher Scientific). Finally, cells

were washed three times in PBS, covered in 200 microliter of PBS, and sealed for microscopy. We imaged cells with an Operetta

high content imaging system (Perkin Elmer) and analyzed the resulting scans using the Columbus image data storage and analysis

system (Perkin Elmer). We performed the experiments in biological triplicates for surface EGFR. To avoid potentially pathological

bright cells, we removed the top 1% of the data in all single cell distributions.

METHOD DETAILS

Generalization of Equation 5 for Multiple Species
Here, we give a generalization of Equation 5 in the main text when the single cell distributions measured from multiple chemical

species are used to constrain the parameter distribution. Consider that we have measured cell-to-cell variability in n different exper-

imental conditions. The experimental conditions are identified by several indicators including identity of the measured species, input

level, time of measurement, etc. We avoid multiple subscripts to specify these various indicators and denote the experimental con-

ditions as fx1; x2;.; xng We consider that the single cell distribution at each measurement ‘‘a’’ is binned in Ba bins. The maximum

entropy parameter distribution is given by (see Equation 5 in the main text)

PðqÞ = 1

U
qðqÞ exp

 
�
Xn
a= 1

XBa

k = 1

lakIakðxaðqÞÞ
!
: (Equation S1)

In Equation S1, IakðxÞ is the indicator function corresponding to the kth bin for the ath experimental condition, Ba is the number of

bins representing the ath experimental condition, and lak is the corresponding Lagrange multipliers.

Inference of Lagrange Multipliers from Data Is Convex
The entropy functional

S = �
Z

PðqÞlog PðqÞdq (Equation S2)

is convex with respect to the probability distribution PðqÞ. Moreover, the constraints that impose normalization and bin fractions are

linear with respect to the probability distribution and are thus convex with respect to PðqÞ as well. Consequently, entire Lagrangian

function (Equation 4 of the main text)

L½PðqÞ� = S+ h

�Z
PðqÞdq� 1

�
�
XB
k = 1

lk

�Z
Ikðxaðt; qÞÞPðqÞdq�fk

�
(Equation S3)

is also convex. Let us consider the dual problem in the space of Lagrangemultipliers. We substitute themaximum entropy probability

distribution PðqÞ from Equation 5 of the main text. We have the dual

L½l� = � log UðlÞ �
XB
k = 1

lkfk : (Equation S4)

Given that the original objective function is convex, the minimization of the dual (Equation S4) is equivalent to the problem of maxi-

mizing the original objective function (the entropy).

Numerical Estimation of Lagrange Multipliers
The Lagrange multipliers in Equation 5 of the main text need to be numerically optimized such that the predicted bin fractions are

consistent with the experimentally estimated ones. As shown above, the search for the Lagrange multipliers is a convex optimization

problem and can be solved using an iterative algorithm proposed in (Tkacik et al., 2006) (see Figure S1). The search algorithm is based

on the dual formulation of the constrained optimization problem; the maximization in Equation 4 with respect to PðqÞ is equivalent to
minimization of the dual in Equation S5 with respect to the Lagrange multipliers (Bertsekas, 1996).

L½l� = � log UðlÞ �
XB
k = 1

lkfk : (Equation S5)

Differentiating the dual with respect to lk, we find that the gradient:

v

vlk
L½l� = jkðlÞ � fk (Equation S6)
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is the difference between predicted bin fractions and the measured bin fractions. Utilizing this formula for the gradient, the algorithm

works as follows. We start from a randomly chosen point in the space of Lagrange multipliers. In the nth iteration of the optimization

algorithm, using the current vector of the Lagrangemultipliers l
ðnÞ
, we estimate the predicted bin reactions usingMCMC (see below in

STAR Methods). Next, we estimate the error vector D
ðnÞ

=j
ðnÞ � f for the nth iteration. We then update the multipliers for the n+1st

iteration as l
ðn+ 1Þ

= l
ðnÞ � aðnÞDðnÞ

(see Figure S1). The positive ‘‘learning rate’’ aðnÞ is chosen tominimize the errorD
ðn+ 1Þ

(see below in

STAR Methods).

We note that in realistic applications, constraints on entropy maximization may be inferred from noisy experimental data and as a

result can be mutually inconsistent (see for example, (Di Pierro et al., 2016; Olsson et al., 2017)); no probability distribution may exist

that will simultaneously reproduces all constraints. In single cell data considered here, this can happen, for example, due to batch-

specific optical offsets that may differ between different experimental measurements (Waters, 2009). In such a case, optimization

problem in Equation S4 is ill-conditioned or infeasible.

A Bayesian approach has been proposed to resolve this issue (Barton et al., 2014; Olsson et al., 2017; Bottaro et al., 2018; Cocco

et al., 2018; Dixit, 2018). In the Bayesian approach, the entropymaximization is carried out analytically to obtain an exponential family

distribution (see Equation 5 in themain text). Next, a Bayesian posterior distribution over the Lagrangemultipliers is formulatedwhere

the likelihood of Lagrange multipliers depends on how well they reproduce the imposed constraints. To avoid ill-conditioning/infea-

sibility, regularizing priors may be then introduced as well. Next, the multipliers are determined to maximize the Bayesian posterior

distribution. Alternatively, a full Bayesian posterior distribution can be also obtained.

In this application of MERIDIAN, the inferred parameter distribution as well as model fits approached stable behavior over itera-

tions. We did need to not impose regularizing priors on the Lagrange multipliers. However, in future applications, a full Bayesian

approach can be implemented.

Making Predictions Using PðqÞ
Here, we show how to make predictions using the inferred parameter distribution. In the discussion so far, we assumed that exper-

imentally measured cell-to-cell variability had no errors. However, single cell experiments are often subject to uncertainty. Thus, we

consider that the measurements are characterized by their mean values f as well as the standard errors of the mean s, which are

estimated using several experimental replicates. We assume that following an iterative procedure described in Figure S1, we have

obtained an optimal set of Lagrange multipliers L: We denote by jðLÞ the corresponding model predicted bin fractions.

Any fixed set of Lagrange multipliers uniquely determines model predictions j. Thus, the errors in experimental measurements

are captured by a distribution over the Lagrange multipliers themselves. We write the probability of non-optimal Lagrange multipliers

lsL as

PðlÞf exp

�
� PB

k =1

ðjk ðlÞ�fk Þ2
2s2

k

�
zexp

�
� PB

k = 1

ðjkðlÞ � jkðLÞÞ2

2s2
k

� (Equation S7)

Equation S7 assumes that the errors are normally distributed and that the residuals Dk =jkðLÞ � fk are small. We have also ne-

glected the Jacobian determinant associated with changing the variables from jðlÞ to l: Sampling Lagrange multipliers from Equa-

tion S7 is in principle possible but may be numerically inefficient. This is because it requires on-the-fly estimation of predicted bin

fractions jkðlÞ for non-optimal Lagrange multipliers lsL. However, if we are interested the first two moments (means and uncer-

tainties), we can approximate the distribution over Lagrange multipliers as a multivariate Gaussian distribution. This is equivalent

to assuming that the experimental errors sk are small compared to the mean values fk. In the EGFR/Akt data used in this work,

the standard errors in the mean are indeed small; median relative error is �9% and the mean relative error is �11%. To express

the distribution in Equation S7 as a Gaussian, we first write

jkðlÞzjkðLÞ+
X�

d

dlj
jkðlÞ

�
l=L

ðdljÞ (Equation S8)

where dlj = lj�Lj is the deviation in lj away from the optimal Lagrangemultipliers. Using linear response theory from statistical phys-

ics (Hazoglou et al., 2015), the derivatives in Equation S8 can be expressed as ensemble average over the parameter space.Wewrite�
d
dlj
jkðlÞ

�
l=L

= d
dlj

R
Ikðxaðt; qÞÞqðqÞexp

�
�PB

l =1Ll Ilðxaðt; qÞÞ
�
dq

R
qðqÞexp

�
�PB

l = 1Ll Ilðxaðt; qÞÞ
�
dq

(Equation S9)
0

�
d

dlj
jkðlÞ

�
l=L

= � cjk = � �CIkðxaðt; qÞ ÞIjðxaðt; qÞ ÞDl=L
� jkðLÞjjðLÞ

�
(Equation S10)
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In Equation S10, cjk is the covariance matrix among the constraints. The average is computed using Equation 5 in the main text

with l = L.

Combining Equations S7, S9, and S10, we obtain the Gaussian approximation to the distribution over Lagrange multipliers:

PðlÞfexp

 
�
XB
k = 1

�
�Pjcjkðlj � LjÞ

�2
2s2

k

!
: (Equation S11)

The multivariate Gaussian distribution in Equation S11 is fully determined by the means and the covariance matrix of the Lagrange

multipliers. We determine these next.

Since we assume that the model can fit the data reasonably accurately, the average value of the deviation in Lagrange multipliers

in Equation S7 is CdljD = 0. Next, we estimate the covariance matrix among the Lagrange multipliers. Let us consider a particular bin

fraction fk. The model estimated uncertainty is given by

s2k =

Z
jkðlÞ2PðlÞdl --jðLÞ2 (Equation S12)
zC

 
jkðLÞ �

X
j

cjkðdljÞ
!2

D� jðLÞ2 (Equation S13)
=
X
j;l

cjkclk

�
CdljdllD� CdljDCdllD

�
(Equation S14)

The experimentally estimated uncertainty in fk is s2k . Equating the two, we have

s2
k =

X
j;l

cjkclk

�
CdljdllD� CdljDCdllD

�
(Equation S15)
0CdljdllD� CdljdllD =
�ðc+ Þdiag�s2

�ðc+ ÞT�
jl

(Equation S16)

In Equation S16, c+ is the pseudoinverse of the covariance matrix.

These first two moments fully describe the multivariate Gaussian distribution over Lagrange multipliers (Equation S11). Next, we

show how to estimate mean predictions and uncertainty in model predictions.

Consider a variable YðqÞ that depends on model parameters q. We are interested in estimating its mean predicted value ‘‘m’’ and

the corresponding uncertainty ‘‘s’’. Let us denote by yðlÞ= R YðqÞPðqjlÞdq the model prediction when the Lagrange multipliers are

fixed at l: We have the mean prediction

m =

Z
yðlÞPðlÞdlzyðLÞ (Equation S17)

Next, we seek the estimated uncertainty:

s2 =

Z
yðlÞ2PðlÞdl --m2 (Equation S18)
zC
�
yðLÞ �

X
gjdlj

�2
D
l=L

� yðLÞ2 (Equation S19)
=
X
j;l

gjgl

�
CdljdllD� CdljDCdllD

�
: (Equation S20)

In Equation S20, the couplings gj are given by

gj =
�
CYðqÞIjDl=L

� CYðqÞD
l=L

jjðLÞ
�
: (Equation S21)

Equations S17–S21 show how to estimate model predictions and the corresponding uncertainty from the parameter distribution

PðqjLÞ (Equation 5 in the main text).
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In the theoretical development above, we restricted the Taylor series expansion to the first order in l. More generally, higher order

Taylor series expansions can also be included. Notably, similar to Equation S4, all higher order Taylor series coefficients can be esti-

mated using MCMC calculations performed using the parameter distribution PðqjLÞ.

Possible Extensions of MERIDIAN
Using MERIDIAN with High-Dimensional Data

MERIDIAN can be used to infer parameter distributions when multiple chemical species are simultaneously measured in single

cells, for example, using single cell mass spectrometry (Budnik et al., 2018, Specht et al., 2019). Here, it may be difficult to accurately

estimate themultidimensional bin counts from the data. Therefore, one can apply the following approach. For example, if two species

x and y are simultaneously measured across several cells, in addition to constraining the one-dimensional bin fractions f
ðxÞ

and f
ðyÞ
,

we can also constrain the cross-moment r = CxyD. With these three types of constraints, the maximum entropy distribution is given by

PðqÞ = 1

U
qðqÞexp

 
�
XBx

k =1

lk I
ðxÞ
k ðxÞ�

XBy

k = 1

kk I
ðyÞ
k ðyÞ� txy

!
: (Equation S22)

In Equation S22, I
ðxÞ
k and Iyk are the indicator functions for species x and y respectively, Bx and By are the number of bins used in the

x- and the y-dimension, l and k are Lagrangemultipliers constraining the bin fractions f
ðxÞ

and f
ðyÞ

respectively, and t is the Lagrange

multiplier that constrains the cross-moment. By adding cross-moment constraints for each pair of species, Equation 6 in the main

text can be generalized to multiple dimensions, adding �N2/2 Lagrange multipliers, where N is the number of measured species.

Speeding up MERIDIAN Inference Using Neural Networks

A key numerical bottleneck in applying theMERIDIAN inference approach is the numerical optimization of a large number of Lagrange

multipliers. It is a well-known problem in maximum entropy inference (Loaiza-Ganem et al., 2017). To address this challenge, Loaiza-

Ganem et al. (Loaiza-Ganem et al., 2017) proposed amaximum entropy flow network approach (see also Bittner et al., 2019) which is

based on approximate deep generative modeling. Briefly, instead of finding the continuous maximum entropy density distribution in

Equation 5 in the main text, they find an approximate maximum entropy distribution within a specified parametric family. The para-

metric family, parameterized by several layers of a neural network, is sufficiently accurate in approximating true maximum entropy

distributions. Moreover, a recent extension of this approach (Bittner and Cunningham, 2019) enables fast simultaneous sampling of

maximum entropy distributions along with a distribution of Lagrange multipliers. These fast approximation methods will be useful

when applying MERIDIAN to study large signaling networks with several experimentally measured single cell distributions.

Model of the EGFR/Akt Signaling Pathway
In this section, we describe in detail the dynamical model used to simulate levels of phosphorylated Akt as well as cell surface EGFRs

after stimulation of cells with EGF.

The model of EGF/EGFR dependent phosphorylation of Akt was based on the previous work of Chen et al. (Chen et al., 2009). We

retained the branch of the Chen et al. model that leads to phosphorylation of Akt subsequent to EGF stimulation. The model had 17

species and 20 parameters. The description of the species is given in Table S2. The description of the parameters is given in Table S1.

A system of ordinary differential equations describing dynamics of concentrations of species participating in signaling is given below

(Equations S23–S38). The model described EGF binding to EGFRs, subsequent receptors dimerization, phosphorylation, dephos-

phorylation, receptors internalization, degradation and delivery to cell surface and activation of Akt. We denote by active receptors

phosphorylated receptors and by inactive receptors all other receptor states. In agreement with the literature only cell surface-local-

ized phosphorylated receptors were allowed to activate Akt (Nicholson and Anderson, 2002). We simplified the phosphorylation of

pAkt through pEGFR; we implemented direct interaction between pEGFR and Akt leading to phosphorylation of Akt.

dR

dt
= ksyn � k1uR+ k�1B� kiR+ krecRi � k2RB+ k�2D1 (Equation S23)
dRi

dt
= kiR� krecRi � kdegRi (Equation S24)
dB

dt
= k1uR� k�1B� k2RB+ k�2D1 � 2k2B

2 + 2k�2D2 � kiB+ krecBi (Equation S25)
dBi

dt
= kiB� krecBi � kdegBi (Equation S26)
dD1

dt
= k2RB� k�2D1 � kapD1 + kdpP1 � k1uD1 + k�1D2 � kiD1 + krecD1i (Equation S27)
dD1i

dt
= kiD1 � krecD1i � kdegD1i + kdpP1i � kapD1i (Equation S28)
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dD
2

dt
= k2B

2 � k�2D2 � kiD2 + krecD2i � kapD2 + kdpP2 + k1uD1 � k�1D2 (Equation S29)
dD2i

dt
= kiD2 � krecD2i � kdegD2i + kdpP2i � kapD2i (Equation S30)
dP1

dt
= kapD1 � kdpP1 � k1uP1 + k�1P2 � k�i P1 + k�recP1i � kbindP1Akt + kdbP1Akt + kaP1Akt (Equation S31)
dP1i

dt
= k�i P1 � k�recP1i � k�degP1i � kdpP1i + kapD1i (Equation S32)
dP2

dt
= kapD2 � kdpP2 + k1uP1 � k�1P2 � k�i P2 + k�recP2i � kbindP2Akt + kdbP2Akt + kaP2Akt (Equation S33)
dP2i

dt
= k�i P2 � k�recP2i � k�degP2i � kdpP2i + kapD2i (Equation S34)
dP1Akt

dt
= kbindP1Akt � kdbP1Akt � kaP1Akt (Equation S35)
dP2Akt

dt
= kbindP2Akt � kdbP2Akt � kaP2Akt (Equation S36)
dpAkt

dt
= kaðP1Akt + P2AktÞ � kppAkt (Equation S37)
dAkt

dt
= � kbindAktðP1 + P2Þ+ kdbðP1Akt + P2AktÞ+ kppAkt (Equation S38)

Implementation of MERIDIAN with Synthetic Data
Generating In Silico Data from Synthetic Parameter Distributions

We tested performance of MERIDIAN with synthetic data using in silico generated single cell abundance distributions of phosphor-

ylated Akt (pAkt) and cell surface EGFR levels. The design of the in silico study closely mimicked the actual experimental data.

As mentioned in the main text, five parameterizations of the EGFR pathway were chosen: (1) the wild type, mimicking the

behavior ofMCF10A cells, (2) a two-fold EGFR overexpression, (3) PTEN loss, represented by a ten-fold decrease in Akt dephosphor-

ylation, (4) two-fold decrease in the rate of endocytosis of activated EGFRs, and (5) two-fold decrease in dephosphorylation rate

of EGFRs.

For each of the five parameterizations, single cell data was generated as follows. First, we sampled in silico parameter sets from

known distributions. Parameters were assumed to be independent of each other and distributed normally (means and variances are

given in Table S3. Next, we sampled �4 3 104 parameter sets and solved the differential equations (Equations S23–S38). For each

parameter set, single cell pAkt levels were recorded for a few EGF stimuli (0.1, 0.31, 3.16, 10, and 100 ng/ml EGF) and a few early time

points (0, 5, 15, 30, and 45 minutes of EGF stimulation).

A cell specific but EGF independent offset was added to the predicted pAkt levels from each in silico cell (representing off target

antibody binding and EGF independent pAkt levels). Using the same parameter sets, we also obtained cell surface EGFR levels at 3

EGF doses (0, 1, and 100 ng/ml) at steady state (t = 180 minutes of EGF stimulation). Similar to pAkt levels, a cell-dependent offset

was added to the sEGFR levels.

For each parameterization of the network, we collected in silico data for 24 single cell distributions (21 pAkt distributions and 3

sEGFR distributions). The distributions were binned in 15 bins each (Table S3). These in silico bin fractions were then used to infer

the MERIDIAN-based parameter distributions. This corresponded to a total of 243 15 = 360 bin fractions and associated Lagrange

multipliers.

Inference of Lagrange Multipliers

The 360 Lagrange multipliers associated with each of the five parameterizations were inferred using a protocol described in detail

below (see the description for experimental data). The optimization for Lagrangemultipliers was stopped when the median relative

error between the fitted bin fractions j and the in silico bin fractions f reached �5% (Figures S2–S6). Notably, the Pearson

correlation coefficient between the fitted bin fractions and the predicted bin fractions was high for all five pathway perturbations

(r2 � 0.99).
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Applying MERIDIAN to Study EGFR/Akt Pathway in MCF10A Cells
Binning Single Cell Data

To infer the joint distribution over model parameters, we used 24 measured distributions of cell-to-cell variability (20 pAkt distribu-

tions, 1 pAkt background fluorescence distribution and 3 sEGFR distributions, see below). For each measured distribution we used

11 bins. The locations and widths of the bins were chosen to fully cover the observed abundance range while also ensuring reliable

estimates of the bin fractions f. See Table S4 for bin locations and experimentally estimated bin fractions.

We detected a small but significant pAkt signal in the absence of EGF stimulation. This background fluorescence signal likely orig-

inated from off target binding of pAkt-detecting antibodies. We assumed that the fluorescent readouts of pAkt/sEGFR levels in in-

dividual cells were equal to the sum of EGF dependent pAkt/sEGFR levels as computed using the signaling network model and

the cell-dependent, but time-independent background fluorescence signal. In case of pAkt levels, the distribution of the background

fluorescence was fitted to the experimentally measured distribution of the background fluorescence (pAkt readout without EGF stim-

ulation). Unlike pAkt levels that respond to stimulation with EGF, cells maintain a high number of EGF receptors on the cell surface in

the absence of EGF. As a result, we did not have experimental access to ‘background fluorescence’ distribution for sEGFR-detecting

antibodies. We determined the range of background sEGFR fluorescence levels as follows. At the highest saturating dose of EGF

(100 ng/ml) majority of the cell surface EGFRs are likely to be removed from the cell surface and degraded. At this dose, we assumed

that the sEGFR background fluorescence can account for half of the measured fluorescence. We did not fit the distribution of back-

ground sEGFR levels to a specific distribution.

Numerical Inference of Lagrange Multipliers

The numerical search for Lagrange multipliers that are associated with bin fractions is a convex optimization problem (see above). We

resorted to a straightforward and stable algorithm proposed in (Tkacik et al., 2006). The algorithm proceeded as follows.We started the

calculationswith an initial guess for the Lagrangemultipliers at zero for eachof the 11bins of the 24 fitted distributions. In the nth iteration,

using the Lagrange multipliers l
ðnÞ
, we estimated the predicted bin fractions j

ðnÞ
using Markov chain Monte Carlo (MCMC) sampling.

MCMC sampling was performed as follows. We propagated 50 parallel chains starting at random points in the parameter space.

Individual MCMC chains in the parameter space were run as follows. In the MCMC, on an average 10 parameters were changed in a

single Monte Carlo step. The parameters were constrained to be within the upper and lower limits determined individually for each

parameter based on available literature estimates (see Table S1). Each chainwas run for 50000MCMCsteps. At each step, we solved

the system of differential equations given in Equations S23–S38 numerically with the proposed parameter assignment using the

ode15s function of MATLAB. We evaluated the pAkt and sEGFR levels and accepted the proposed parameters using the Metropolis

criterion applied to Equation 5 in the main text. Briefly, for any set of parameters, we defined the energy

EðqÞ = � log PðqÞ=
Xn
i = 1

XBi

k = 1

lik Iik
�
xiðqÞ�+ const: (Equation S39)

Starting from any parameter set q, a new parameter set q
0
was proposed as described above. Then, the differential equations

describing system dynamics were solved and the new energy Eðq0Þ was computed. The difference in energy dE =Eðq0Þ � EðqÞ
was used to probabilistically accept/reject the new parameter set with an acceptance probability

pacc = minð1; expð�dEÞÞ: (Equation S40)

Parameter points that predicted pAkt and sEGFR levels outside of the ranges observed in experimental data were rejected (see

Table S7 for allowed ranges). We discarded the first 5000 steps as equilibration and saved parameter values every 50th iteration.

At the end of the calculation, parameter samples from all MCMC chains were combined together. We also imposed a few realistic

constraints on pAkt and sEGFR time courses predicted by the model. All parameter sets that did not satisfy these constraints were

discarded. The constraints were as follows. (1) Given that EGF ligand induces receptor endocytosis, we required that the surface

EGFR levels at 180 minutes of sustained stimulation with 100 ng/ml EGF to be lower than the steady state surface EGFR levels in

the absence of EGF stimulation. (2) Similarly we required that pAkt levels at 45 minutes were lower than pAkt levels at 5 minutes

for the highest EGF stimulation (100 ng/ml).

Using the sampled parameters, we estimated the bin fractionsjn aswell as the elements of the relative error vectorD
ðnÞ

= j
ðnÞ�f

ðnÞ

in the nth iteration. For the n+1st iteration, we proposed new multipliers l
ðn+ 1Þ

= l
ðnÞ � aðnÞDðnÞ

. The multiplication constant aðnÞ was

chosen as follows. First, the approximate estimate of the predicted bin fractions for a given value of aðnÞ was obtained using the Taylor

series expansion

j
ðn+ 1Þ
pred zj

ðnÞ � aðnÞcðnÞD
ðnÞ

(Equation S41)

where c(n) is the covariance matrix with entries

c
ðnÞ
kl = CIk IlD

l
ðnÞ � jkðlðnÞÞjlðlðnÞÞ (Equation S42)

when the Lagrange multipliers are fixed at l
ðnÞ
. We chose a(n) in the interval [0.05, An] so as to minimize the predicted error

e
ðn+ 1Þ
pred =

���jðn+1Þ
pred � f

���.
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1000MCMC steps took 5–10minutes. At the end of the calculation, the numerically inferred distribution over parameters captured

with high accuracy the individual bin fractions of the distributions that were used to constrain it (Pearson’s r2 = 0.9, p < 10-10, median

relative error = 14%). Notably, as seen in Figure S9, the predicted bin fractions from two independent calculations to determine the

Lagrange multipliers were highly correlated with each other (Pearson’s r2 = 0.99, p < 10-10) indicating that the calculations converged

to the same parameter distribution.

Inversion of Covariance Matrix

In order tomake predictions usingMERIDIAN, we first sample several parameter points from the parameter distribution PðqjLÞ (Equa-
tion 5 in the main text) using MCMC and the Metropolis criterion as described above. Using NS parameter samples, we generate a

sparse matrix with entriesMab where a is the index of the sample point (a˛ð0;NSÞÞ and b is the index of the bin (and the experiment).

There are a total of 24311 = 264 bins used in this work and the b index runs between 1 and 264. The entryMab = 1 only if the model

solutions pass through the bth bin for any given set of parameters. From the matrix M, we estimate the 2643264 covariance matrix

among the constraints. The entries of the convariance matrix are given by

ckl = CIk IlDL � jkðLÞjlðLÞ (Equation S43)

where k; l˛½1; 264�: Next, we compute the inverse of the covariance matrix. Since all bin fractions at any given experimental con-

ditions add up to one by definition, the covariancematrix is not full rank. Indeed, it has a total of 24 zero eigenvalues corresponding to

24 redundancies in the constrained single cell distributions. When inverting the covariance matrix, we neglect these 24 zero eigen-

values. The resultant inverse c+ is the so-called Moore-Penrose pseudoinverse of the matrix.

QUANTIFICATION AND STATISTICAL ANALYSIS

All Pearson correlation coefficients and the corresponding p values were calculated using MATLAB.

DATA AND CODE AVAILABILITY

All data and MATLAB code used in this work is available at https://github.com/dixitpd/MERIDIAN.
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