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Reprogramming of cellular metabolism is an emerging  
hallmark of neoplastic transformation. However, it is not  
known how the expression of metabolic genes in tumors  
differs from that in normal tissues, or whether different 
tumor types exhibit similar metabolic changes. Here we 
compare expression patterns of metabolic genes across 
22 diverse types of human tumors. Overall, the metabolic 
gene expression program in tumors is similar to that in the 
corresponding normal tissues. Although expression changes 
of some metabolic pathways (e.g., upregulation of nucleotide 
biosynthesis and glycolysis) are frequently observed across 
tumors, expression changes of other pathways (e.g., oxidative 
phosphorylation) are very heterogeneous. Our analysis also 
suggests that the expression changes of some metabolic 
genes (e.g., isocitrate dehydrogenase and fumarate hydratase) 
may enhance or mimic the effects of recurrent mutations in 
tumors. On the level of individual biochemical reactions, many 
hundreds of metabolic isoenzymes show significant and  
tumor-specific expression changes. These isoenzymes are 
potential targets for anticancer therapy.

All tumors share a common phenotype of uncontrolled cell prolifera-
tion. To support the synthesis of biomass components and to gen-
erate the energy required for cellular growth, cancer cells have to 
reshape the regulatory and functional properties of their metabolic 
networks. Over 80 years ago, Otto Warburg identified a shift from 
oxidative to fermentative metabolism as a common physiological trait 
of tumor cells1. Despite this early insight into cancer metabolism,  

the main focus of cancer research shifted toward the analysis of  
signaling, gene-regulatory and genetic perturbations in various 
tumors2,3. Recently, however, there has been a resurgence of interest 
in cancer metabolism4–6. An important factor contributing to this 
renaissance is the observation that many signaling pathways altered 
in cancer are key regulators of the human metabolic network5.  
In addition, the therapeutic potential of metabolic targets in cancer 
has been rediscovered7,8.

Here we use a large compendium of gene expression profiles accu-
mulated over the last decade9,10 to comprehensively analyze tumor-
induced changes in mRNA expression of human metabolic genes 
across 22 diverse cancer types. To minimize confounding metabolic 
adaptations that may arise from tissue culture conditions, we ana-
lyzed only microarray data obtained from biopsies of primary tumors.  
We compared gene expression in tumors and corresponding normal 
tissues at several conceptual levels of biochemical organization: at the 
global network level, at the level of individual biochemical pathways 
and at the level of single enzymatic reactions. The focus on the human 
metabolic network and the analysis of the large collection of tumor 
and normal samples allowed us to gain statistical power and establish 
significance for many expression patterns that, to our knowledge, 
have not been reported.

RESULTS
Global changes in metabolic gene expression
To understand metabolic gene expression in different cancers, we 
assembled a comprehensive collection of >2,500 microarray mea
surements spanning 22 different tumor types (Online Methods and 
Supplementary Table 1). We analyzed only expression data obtained 
using the most comprehensive human expression array platform  
(HG U133 Plus 2.0; Supplementary Table 2). Differences in expres-
sion of metabolic genes between tumor and corresponding normal 
tissues for the same tumor types obtained in independent studies and 
with different microarray platforms (Supplementary Table 3) were 
highly correlated (average Spearman’s rank correlation coefficient = 
0.63), confirming the generality of the observed expression patterns 
(Supplementary Fig. 1).

Using the assembled expression compendium, we first investigated 
the global shifts in metabolic gene expression between and within  
different cancers and their corresponding normal tissues. For  
this analysis we used 1,421 human genes assigned to metabolic path-
ways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database11. Using two different measures of divergence between a 
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pair of expression profiles12, the Euclidean distance and the correla-
tion distance (Online Methods), we compared global expression pat-
terns between tumors and normal tissues (Supplementary Table 2).  
The influence of batch effects, which arise from variations in labora-
tory conditions and measurements, were estimated (Online Methods 
and Supplementary Table 4) and subtracted from expression dis-
tances between expression profiles measured in different studies.

Relative differences between the distributions are consistent for 
the two metrics of expression divergence (Fig. 1 and Supplementary 
Fig. 2). The expression distance between tumors and correspond-
ing normal tissues (Tumorn-Normaln) is significantly larger than 
the distance between different samples of the same normal tissues 
(Normaln-Normaln; Mann-Whitney U test, P = 10−8; Fig. 1) or 
between different samples of the same tumors (Tumorn-Tumorn;  
P = 4*10−7). The distance Tumorn-Normaln, however, is significantly 
smaller than the distance between different tumors (Tumorn-Tumorm; 
P = 2*10−7), which in turn is significantly smaller than the distance 
between different normal tissues (Normaln-Normalm; P < 2*10−16). 
The average expression distance between two different tumors is 
~82% of the average distance between two different normal tissues, 
whereas the distance between a tumor and a corresponding normal 
tissue is ~63% of the distance between two different normal tissues. 
Consequently, although the metabolic expression patterns in different 
tumors become more similar than in corresponding normal tissues, 
the overall similarity between the metabolic expression programs of 
tumors and corresponding original tissues remains high.

Expression changes of individual biochemical pathways
We next analyzed the expression changes associated with indivi
dual biochemical pathways defined in the KEGG database11 (see 
Supplementary Table 5 for pathway information and numbering).

To identify the patterns of up- and downregulation for each meta-
bolic pathway, we determined the significance of its expression changes 
in the tumor samples relative to the corresponding normal samples 
using the Wilcoxon signed-rank test, adjusted for multiple hypothesis 
testing. Based on this analysis, we calculated the average fraction of 
tumor samples in which each metabolic pathway was significantly 
(false-discovery rate (FDR)-corrected, P < 0.05) upregulated (n ) and 
downregulated (m) across 22 cancer types (Fig. 2). The observed 
behaviors of the metabolic pathways highlighted in Figure 2 were 
statistically significant when compared with the null distributions of 
(n m+ ) and (| |n m− ) values based on 1,000 random permutations of 
the expression data (Supplementary Fig. 3). The general expression 
patterns observed with the KEGG pathways were similar to results 
obtained using the BioCyc pathway definitions13 (Supplementary 
Fig. 4a and Supplementary Table 6), suggesting the robustness of 
the results with respect to alternative pathway definitions.

As expected, pathways responsible for production of biomass com-
ponents that are essential for cell division, such as pyrimidine and 
purine biosynthesis, are significantly upregulated in many tumor 
samples (Fig. 2). Along with these two pathways, glycolysis is also 
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Figure 1  Global differences in metabolic gene expression between tumors 
and normal tissues. Colors represent distributions of the Euclidean 
expression distance (root mean squared deviation, r.m.s.d.) between 
different samples of identical normal tissues (Normaln-Normaln, magenta), 
different samples of identical tumors (Tumorn-Tumorn, cyan), tumors 
and corresponding normal tissues (Tumorn-Normaln, blue), different 
tumors (Tumorn-Tumorm, green) and different normal tissues (Normaln-
Normalm, red). The distributions were binned for display purposes only. 
Inset summarizes the average distances between pairs of tissues as a 
percentage of the average distance between two different normal tissues.
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Figure 2  Expression of individual metabolic pathways in tumors. The 
biochemical pathways defined in the KEGG database (see Supplementary 
Table 5 for pathway numbering) are shown in the coordinates of n m+  
and n m− , where n  is the average fraction of tumor samples in which 
a pathway is significantly upregulated, and m is the average fraction 
in which a pathway is significantly downregulated. The averages n  and 
m were calculated across all 22 tumors. The up- and downregulation 
significance was determined using Wilcoxon signed-rank test (FDR-
corrected, P < 0.05, see Supplementary Fig. 4b for the same analysis 
with FDR = 0.2). The dashed lines demarcate the region where n m−  is 
<20% of n m+  and are shown for visualization purposes only. Metabolic 
pathways without significant expression changes are primarily clustered 
on the left of the figure. Pathways that are often significantly upregulated 
(high n values) occupy positions in the upper right corner, whereas 
pathways that are primarily downregulated (high m values) occupy 
positions in the lower right corner. Highly heterogeneous pathways that 
show, in different tumors, both significant up- and downregulation are 
clustered on the right near zero on the vertical axis.
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significantly upregulated in many tumor samples, consistent with an 
enhanced glucose uptake frequently observed in tumors14. Among 
other pathways displaying frequent and significant upregulation are 
pathways related to protein synthesis (aminoacyl-tRNA biosynthe-
sis) and glycoprotein biosynthesis (N-glycan biosynthesis). In tumor  
samples where the expression of the aforementioned pathways is 
not significantly changed, the overall metabolic gene expression was 
mostly either downregulated or not significantly changed. Specifically, 
this is the case for 72% of tumor samples with no significant change in 
glycolysis pathway expression, 84% of tumor samples with no change 
in purine biosynthesis pathway expression and 88% of tumor samples 
with no change in pyrimidine biosynthesis pathway expression.

In contrast to the biosynthesis pathways, pathways responsible 
for degradation of essential amino acids (valine, leucine and isoleu-
cine degradation), cofactors (retinol metabolism) and fatty acids are 
frequently and significantly downregulated. Notably, two metabolic 
pathways that are also consistently downregulated across various 
tumors are xenobiotic and drug metabolism. These processes are 
responsible for detoxification and disposal of compounds foreign to 
the normal biochemistry of the cell. Several previous studies have 
shown that polymorphisms in cytochrome P450 genes correlate with 
cancer susceptibility in different types of cancer, including those of the 
lung, bladder and breast15,16. Although the decreased expression of 
xenobiotic pathways in cancer needs to be validated and its potential 
causes investigated, the observed downregulation may contribute to 
the increased sensitivity of cancer cells to chemotherapies.

The heterogeneous behavior of the oxidative phosphorylation 
and the TCA cycle pathways is also notable (Fig. 2). Oxidative phos-
phorylation shows the most heterogeneous behavior of all meta-
bolic pathways considered. In brain, colon, kidney, pancreatic and 
thyroid cancers, genes involved in oxidative phosphorylation are 
significantly downregulated, whereas in breast, leukemia, lung,  
lymphoma and ovarian cancers, these genes are significantly upregu-
lated (Supplementary Table 7). This pattern suggests that the role of 
oxidative phosphorylation is not universal for all tumors, but pos-
sibly reflects the adaptation of different cancers to tissue-specific  
physiological conditions such as hypoxia, nutrient availability or com-
plement of genetic lesions driving a specific tumor type.

We also explored the heterogeneity of metabolic pathway expres-
sion across different samples of the same (or similar) tumor types. 
Such an analysis (Supplementary Fig. 5) showed that oxidative 
phosphorylation gene expression is not only heterogeneous between 
different tumor types, but also frequently varies between samples of 
the same tumor. This observation suggests that the activity of oxi-
dative phosphorylation is influenced not only by the variability of 
environments across different tumor types, but also by the specific 
physiological conditions and/or genetic composition of individual 
tumors in each cancer patient. In contrast, other metabolic path-
ways showed similar expression patterns across different samples of  
the same tumor.

Correlation between metabolic pathways and signaling genes
We next investigated correlations between the expression of metabolic 
pathways and expression of signaling and regulatory genes frequently 
involved in tumorigenesis. Although several previous studies17 
demonstrated that correlated expression patterns usually cannot be 
equated with regulation causality, that is, one gene being regulated  
by the other, significant correlations could still reveal important 
functional relationships. To find significant expression correlations  
(Z-score > 2.0; Supplementary Table 8) between the 214 nonmetabolic  
genes annotated in the KEGG signaling and/or cancer pathways 

(Supplementary Table 9) and the 87 metabolic pathways consid-
ered in our analysis, we used the context likelihood of relatedness 
(CLR) method18. The CLR algorithm uses mutual information—an 
information theory measure that quantifies statistical dependencies 
between two variables—to identify significant correlations between 
two expression patterns.

The CLR analysis revealed several notable relationships. The oxida-
tive phosphorylation pathway has high mutual information with the 
hypoxia-inducible factor (HIF1A) and its negative regulator RBX1. 
Notably, the oxidative phosphorylation expression is negatively cor-
related with the expression of HIF1A and is positively correlated with 
the expression of RBX1. The observed negative correlation between 
oxidative phosphorylation and HIF1A suggests that the heteroge-
neity in the expression of oxidative phosphorylation genes (Fig. 2) 
is likely to be influenced by tumor oxygen availability. In addition, 
the mutual information between HIF1A and glycolysis is not high, 
probably because although HIF1A is involved in the upregulation of 
glycolysis specifically under hypoxia, many tumors show upregulated 
expression of oxidative phosphorylation and may not be hypoxic. In 
contrast, there is significant mutual information between glycolysis 
and CDC42, a gene essential for cell cycle progression. Glycolysis is 
also strongly correlated with expression of RAS and genes from the 
MAPK pathway, which have been previously implicated in promoting 
aerobic glycolysis19. Apart from glycolysis, CDC42 expression also has 
high mutual information with other pathways essential for fast cellular 
growth (such as purine, pyrimidine and amino acid biosynthesis).  
On the other hand, CDC42 expression is not correlated with the 
expression of oxidative phosphorylation, suggesting that in fast- 
growing tumor cells glucose fermentation dominates.

Principal component analysis of pathway expression changes
Individual metabolic pathways do not function in isolation. In con-
trast, they display highly correlated and interdependent patterns of 
gene expression. Therefore, we used principal component analysis 
(PCA)20 to better understand the joint behavior of metabolic path-
ways in cancer (Table 1; see Supplementary Tables 10 and 11 for 
similar analysis based on alternative methods for calculating principal 
components). To reduce noise associated with heterogeneous expres-
sion of individual pathways, we considered the expression changes in 
the space of nine meta-pathways, such as glycolysis and nucleotide 
biosynthesis, that represent major metabolic processes. Combined, 
the first three principal components were able to capture ~85% of the 
expression variance of the meta-pathways.

The first principal component accounts for ~62% of the variance 
in the meta-pathway expression changes. As all pathway weights for 
this component have the same sign and similar values, it represents 
an approximately uniform shift in the overall expression of metabolic 
genes. The projection of cancer samples onto the plane defined by 
the first and second principal components (Supplementary Fig. 6) 
shows that tumors of the digestive system (colon, kidney and liver) 
have a high positive shift along this component, suggesting an over-
all decrease in metabolic gene expression. In contrast, several other 
tumors (e.g., cervix and lymphomas) show an overall increase in meta-
bolic gene expression. It is likely that the observed shifts along the first 
principal component reflect, at least to some extent, the loss of specific 
metabolic functions required by the corresponding normal tissues, and 
the switch to a metabolic program primarily focused on growth and 
proliferation. This may account for the overall decrease in expression 
of metabolic genes observed in tumors of the gastrointestinal system 
that normally have high metabolic gene expression unique to these 
differentiated tissues.
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Shifts along the second component, explaining ~16% of the expres-
sion variance, involve a change in the expression of glycolysis and 
nucleotide biosynthesis with a concomitant opposite change in the 
expression of three catabolic pathways. Because an increased rate 
of nucleotide biosynthesis is especially important during ribosome 
biogenesis and chromosomal duplication, our results suggest that 
rapidly dividing cells appear to rely more on glycolysis than cells 
growing slowly. Oxidative phosphorylation is also associated with 
the second component, although with a substantially smaller weight 
than glycolysis (0.21 versus 0.65). Consequently, along this compo-
nent glycolysis occurs concurrently with oxidative phosphorylation.  
Shifts along the third principal component, which explains ~7% of 
the variance, primarily involve a strong change in the expression of 
oxidative phosphorylation with a concomitant opposite change in 
nucleotide biosynthesis. Therefore, a strong upregulation of oxidative 
phosphorylation along this component is likely to be associated with 
slower growth rates.

Expression changes of biochemical reactions and isoenzymes
Next, we focused on expression changes associated with individual 
biochemical reactions, which form the most basic level in hierarchical  
organization of the human metabolic network. We used 2,307 reac-
tions, each associated with at least one known enzyme in a model of 
human metabolism21. In the human metabolic network and in the 
networks of other organisms22, a given biochemical reaction is fre-
quently catalyzed by several different isoenzymes. Isoenzymes may 
be encoded by separate genes or arise from alternative splicing of 
the same gene. In the network model we used21, ~30% of metabolic 
reactions contain at least two known isoenzymes, and this percentage 
is even higher (~40%) for the reactions of central carbon metabo-
lism. Different kinetic and regulatory properties of isoenzymes 
are often fine-tuned to meet specific metabolic requirements of 
various human tissues22. Owing to metabolic demands and con-
straints different from those of native tissues, it is likely that tumors 
might preferentially express isoenzymes that facilitate survival and  
uncontrolled proliferation23,24.

The heterogeneity of isoenzyme expression across tumors is appar-
ent from the analysis of central metabolism (Fig. 3 and Supplementary 
Table 12). Although genes encoding glycolytic enzymes are frequently 
upregulated in tumors, some isoenzymes are downregulated in spe-
cific cancers. Gene expression is significantly (Wilcoxon signed-rank 
test, P < 0.05) increased for key enzymes of the pentose phosphate 
pathway, including both the oxidative and non-oxidative branches. 
Lactate dehydrogenase is also strongly upregulated, consistent with 
the high level of lactate production observed in many tumors25. 

Frequent downregulation of the pyruvate dehydrogenase complex 
likely contributes to a decreased flux of pyruvate into the TCA cycle 
observed in many tumors. The enzymes essential for purine and 
pyrimidine synthesis, as well as the glutathione synthetase26, are 
strongly upregulated. Although glutaminase, an enzyme important 
for the TCA cycle anaplerosis, is generally downregulated, it has 
been demonstrated that this enzyme is strongly upregulated post-
transcriptionally by the MYC-mediated suppression of miR-23a/b27. 
Notably, a recent study28 suggested that an alternative route for the 
glutamine-to-glutamate transformation, perhaps through nucleotide 
biosynthesis amidotransferases, may play an important role in the 
glutamine-dependent anaplerosis. This hypothesis is consistent with 
a strong upregulation of the corresponding enzymes (PPAT and CAD) 
across tumors observed in our analysis.

We investigated changes in relative isoenzyme expression using 
the Kullback-Leibler (KL) divergence; the KL divergence is an infor-
mation theory measure used to quantify the difference between 
two probability distributions. For each biochemical reaction the KL 
divergence was used to measure shifts in the distribution of isoen-
zyme expression between tumors and corresponding normal tissues. 
This analysis demonstrated that, on average, the relative expression 
patterns of isoenzymes are about two times more similar for differ-
ent samples of identical normal tissues than for different samples 
of identical tumors (Fig. 4a). But more importantly, both of these 
distances are significantly smaller than the average distance between 
isoenzyme expression patterns in tumors and corresponding normal 
tissues (Mann-Whitney U test, P < 2*10−16). This suggests that for 
many biochemical reactions, neoplastic transformation leads to a  
significant shift in the relative expression of isoenzymes.

The human aldolase is an example of an enzyme with perturbed 
expression patterns in tumors (Fig. 4b). The enzyme has three main 
isoforms, A, B and C. Although aldolase A (ALDOA) is preferentially 
expressed in muscle cells, it is also strongly expressed in most other 
human tissues. Aldolase B (ALDOB) is preferentially expressed in the 
liver and aldolase C (ALDOC) in the brain. The expression analysis 
shows that the expression of ALDOA, relative to the other aldolase 
isoenzymes, is significantly (Online Methods; Mann-Whitney U test, 
P < 0.05) greater in tumors than in normal tissues. Notably, ALDOA 
is also highly expressed in developing embryos29, and therefore may 
be particularly suitable for metabolic requirements during fast cell 
proliferation. Indeed, the kcat of ALDOA is substantially higher than 
that of the other isoenzymes30.

Another example of an enzyme with perturbed expression patterns 
is aconitase. Our analysis suggests that the citrate efflux from the TCA 
cycle is likely to be enhanced in cancers by frequent downregulation  

Table 1  Principal component analysis (PCA) of gene expression in major metabolic processes.

Variables (meta-pathways)
Number of genes involved 

in each meta-pathway
Weights in the 1st  

component
Weights in the 2nd  

component
Weights in the 3rd  

component

Oxidative phosphorylation 135 −0.40 0.21 0.67
Glycolysis 24 −0.33 0.65 −0.01
Citric acid cycle 21 −0.50 −0.10 0.02
Amino acids biosynthesis 70 −0.27 −0.11 −0.17
Fatty acids and lipids biosynthesis 66 −0.28 0.05 0.09
Nucleotides and nucleosides biosynthesis 54 −0.35 0.34 −0.67
Amino acids degradation 123 −0.31 −0.40 −0.15
Fatty acids and lipids degradation 80 −0.22 −0.35 0.17
Nucleotides and nucleosides degradation 9 −0.26 −0.34 −0.04
Proportion of variance explained by each component – 0.62 0.16 0.07

The PCA was performed using the average expression changes of genes forming nine meta-pathways representing major biochemical processes. The pathway weights indicate the 
relative contribution of each meta-pathway to the principal components; weights with identical signs indicate correlated contributions of pathways to a component, while weights 
with opposite signs indicate negatively correlated contributions. The table show the PCA weights of each meta-pathway for the first three principal components. The first three 
principal components explain ~62%, ~16% and ~7% of variance in expression data, respectively.
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of the mitochondrial isoform of aconitase (ACO2) (Fig. 3a,b).  
Cytosolic citrate is used to generate acetyl-CoA, an important precur-
sor required for many biosynthetic reactions involved in lipogenesis31. 
Inhibition of the mitochondrial aconitase in normal human tissues32  
and yeast33 was previously shown to significantly increase the TCA 
cycle citrate efflux. The strong upregulation of the ATP citrate lyase ACL  
across tumors (Fig. 3) provides additional support for the idea that 
these changes promote fatty acid biosynthesis in tumors. A recent 
study showed that an important route for the synthesis of lipogenic 

acetyl-CoA under hypoxia34 is through reductive metabolism of 
α-ketoglutarate by cytosolic isocitrate dehydrogenase (IDH1) and 
cytosolic aconitases (ACO1/ACO3). This pathway is also supported 
by the observed expression patterns because in contrast to the mito-
chondrial aconitase, the cytoplasmic aconitases and IDH1 (see below) 
are frequently upregulated in specific cancers (Fig. 3a).

To identify specific isoenzymes with frequently perturbed expres-
sion profiles, we calculated, for each isoenzyme in every biochemical 
reaction, the number of tumors in which the fractional expression of 
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the isoenzyme among all isoenzymes catalyzing the same reaction is 
significantly upregulated. After correcting for multiple hypothesis 
testing, 919 isoenzymes were relatively upregulated in at least one 
tumor type, and 322 were upregulated in >25% of the 22 tumor types 
considered in our analysis (Supplementary Table 13).

Expression of enzymes with recurrent mutations in tumors
We next investigated expression changes for metabolic genes with 
known tumor-associated mutations. Recent sequencing studies have 
identified recurrent mutations in several genes associated with the 
TCA cycle35,36. Heterozygous somatic mutations in two isoenzymes 
of isocitrate dehydrogenase (cytoplasmic IDH1 and mitochondrial 
IDH2) are frequently detected in gliomas and acute myeloid leuke-
mia (AML). These gain-of-function mutations affect the IDH active 
site and make it possible for the mutated enzymes to catalyze the 
conversion of α-ketoglutarate to 2-hydroxyglutarate, which has been 
proposed to promote cancer development37. Our analysis reveals that 
IDH1 and IDH2 isoenzymes are frequently upregulated in cancers 
(Fig. 3b), but the expression of the other isocitrate dehydrogenase 
isoenzyme IDH3 (not commonly mutated in tumors) is not signifi-
cantly perturbed. This focused analysis of IDH expression across 
cancers (Supplementary Table 14) demonstrated that the upregula-
tion of IDH1 in the three brain cancers and AML is among the six 
strongest of all considered tumor types. Recent sequencing efforts38 
also demonstrated the presence of similar IDH active site mutations in 
peripheral T-cell lymphoma, another tumor in our study with signifi-
cant upregulation of IDH expression (Supplementary Table 14).

Germline and somatic loss-of-function mutations in fumarate 
hydratase (FH) and three subunits of succinate dehydrogenase 
(SDHB, SDHC, SDHD) are also observed in several tumors includ-
ing renal cell carcinoma36,39. These deleterious mutations lead to the 
accumulation of the metabolites fumarate and succinate that regulate 
HIF protein levels and chromatin state to influence tumor growth40,41. 
We found that the SDH subunits and FH are strongly downregulated 
specifically in renal cell carcinoma (Supplementary Tables 15 and 
16). The only cancer in our analysis with a more significant down-
regulation is colorectal cancer, in which decreased expression of SDH 
was reported previously42. Although somatic mutations in SDH and 
FH have not been observed in colorectal cancer43,44, the significant 
decrease in their expression, similar to deleterious mutations in other 
tumors, is likely to cause mitochondrial efflux of the tumor-promoting  
TCA cycle intermediates and contribute to tumorigenesis.

Validation of TCA cycle metabolite changes in colon cancer
To confirm our computational prediction about TCA cycle intermediates 
in colon cancer, we measured and analyzed concentrations of specific 
metabolites from ten colon cancer patients (Fig. 5 and Supplementary 
Table 17). The metabolite levels were obtained using gas chromatography/
mass spectrometry (GC/MS) or liquid chromatography (LC)/MS and 
contained matched tumor and normal samples from each patient.

Consistent with significant downregulation of oxidative phos-
phorylation pathway genes (Wilcoxon signed-rank test, P = 10−9, 
Supplementary Table 7) and downregulation of the pyruvate dehy-
drogenase complex (P = 0.02) that controls the majority of glucose 
carbon flux into the TCA cycle, there is a significant decrease in the 
citrate concentration (Wilcoxon signed-rank test, P = 0.01) in tumor 
samples and a concomitant increase in the lactate concentration  
(P = 0.001). Despite a large decrease in the citrate concentration (aver-
age decrease ~65%, median ~90%), the average concentration of a 
downstream metabolite succinate is only 33% lower than normal and 
the average concentration of fumarate is >50% higher than in normal 
samples (P = 0.03). This pattern of concentration changes is consistent 
with the significant downregulation of the FH and SDH enzymes we 
observed in colon cancer expression profiles. Such a downregulation  
should lead to a significant increase, relative to the available citrate, 
in the concentration of their substrates fumarate and succinate. 
Notably, it was previously demonstrated40 that even a small increase 
in fumarate concentration is enough to stabilize HIF1A by inhibi-
tion of the α-ketoglutarate-dioxygenases regulating its degradation41. 
The average increase in fumarate concentration (~50%) was about 
half of the amount observed previously for bi-allelic deletions of the 
FH enzyme (~90%)40. For four patients, fumarate concentration was 
>50% higher in tumor samples than in matched normal samples, and 
for three patients it was >100% higher. Consequently, the expression 
changes we observed should mimic the effects of cancer-associated 
heterozygous FH mutations in a substantial fraction of colon  
cancer patients.

DISCUSSION
It has now been recognized that reprogramming of cellular metabo-
lism is essential for tumorigenesis2. An overarching conclusion of 
our study is that cancer-induced changes in the expression of meta-
bolic genes are very heterogeneous across different tumor types, that 
is, there is no uniform metabolic transformation associated with 
all tumors. We observe heterogeneous behavior at all levels of bio-
chemical organization, from global expression patterns to metabolic 
pathways to individual reactions and corresponding isoenzymes. The 
heterogeneous behavior of cancer metabolism is reminiscent of the 
high variability between tumors in terms of genetic and expression 
changes in signaling and regulatory pathways3.
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Despite the heterogeneity between cancers, the metabolic expres-
sion changes associated with individual tumors are not random. 
On the contrary, many of the observed changes are reproducible in 
independent samples of the same tumors. We suggest three princi-
ples unifying the observed tumor-induced expression perturbations.  
(i) Tumors often retain a substantial imprint of the metabolic expres-
sion patterns present in the corresponding native tissues. This may 
be a consequence of similar local environments or indicate a relative 
rigidity of the metabolic expression program established in the origi-
nal tissue. Such behavior is conceptually similar to the minimization 
of metabolic adjustments principle observed in microbial metabolism 
following genetic perturbations45. (ii) A large fraction of the variance 
in the expression of major biochemical processes can be rationalized 
in terms of several principal components, representing important 
expression modes for key metabolic processes. Although, in agree-
ment with physiological studies14,46, we do not observe universal 
up- or downregulation of genes associated with oxidative phosphor-
ylation, the collective expression changes along the second and third 
principal components suggest that fast-growing tumor cells increas-
ingly rely on glucose fermentation. (iii) We find that hundreds of 
isoenzymes show significant and tumor-specific expression changes. 
A substantial fraction of these changes are likely to be functionally 
important and, at least in some cases, mimic (as in the case of SDH 
and FH) or possibly enhance (as in the case of IDH) the effects of 
recurrent tumor-promoting genetic mutations.

Beyond contributing to the understanding of tumor-induced expres-
sion changes, we believe that our analysis has important implications 
for the development of anticancer therapeutics. Functionally important 
isoenzymes with cancer-specific expression changes can potentially 
serve as drug targets. The possibility of targeting specific isoenzymes, 
such as glutaminase 1 (GLS-1; ref. 8) and pyruvate kinase M2 (PKM2; 
ref. 7), has already been demonstrated, but our analysis suggests that 
many other potential targets may be pursued in a similar way. Owing 
to the tumor-specific nature of the observed expression patterns, such 
targeting will require a focused analysis and understanding of essential 
metabolic transformations in each specific cancer type.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Microarray expression data sets. Published gene expression data sets were 
assembled from the GEO9 and ArrayExpress10 databases (Supplementary 
Table 1). Unless specified otherwise, we analyzed only expression data 
obtained using the most comprehensive human expression array platform (HG 
U133 Plus 2.0; Supplementary Table 2). For calculations involving global net-
work properties and comparisons of expression data between different studies  
(Fig. 1), samples from all data sets were processed together. For all other 
calculations, tumor and normal samples from the same study were processed 
together. The affyQCReport package from Bioconductor was used to search 
for poor quality chips. For GeneChip arrays that passed quality control (QC) 
checks, we used the GCRMA algorithm47 from Bioconductor to perform quan-
tile normalization and extract gene expression values on the log2 scale.

Calculation of differential expression (DE) for metabolic genes. Separately 
for each data set, the Bioconductor method limma48, which is based on a modi-
fied t-statistic, was used to analyze differences between tumor samples and cor-
responding normal samples. Using the method we calculated the differential 
expression for each metabolic gene on the log2 scale. The differential expres-
sion P-values were adjusted for multiple hypothesis testing using Benjamini 
and Hochberg’s method49, controlling False Discovery Rate (FDR) at 5%.

Calculation of the global divergence between a pair of expression pro-
files. Two different measures of divergence between a pair of expression pro-
files were used in our study: (i) The Euclidean distance (root mean squared  
deviation),

r m s d x y ni i
i

n
. . . . [ (log ) (log )] /= −

=
∑ Average Average2 2

2

1

where xi and yi are the expression of gene i over two expression profiles with 
p and q samples (x1, x2,…,xp), (y1, y2,…,yq), n = 1421 is the number of genes 
assigned to at least one metabolic pathway in the KEGG database. (ii) The 
correlation-based distance dcor = 1−r (Average (log2 x), Average (log2 y)), 
where r is the Spearman’s rank correlation coefficient between average log2 
expression values of corresponding genes in the two expression profiles.

When comparing data sets across different studies it is important to 
consider batch effects arising from variations in laboratory conditions and 
measurements. To explore and address batch effects, we collected a set of 
microarray expression data for the same tissues/tumor types from multiple 
independent studies (Supplementary Table 4). All samples in Supplementary 
Table 4 were processed and normalized together. To estimate the influence of 
the batch effects, we calculated d1, the average expression distance between 
tumors (Tumorn) and corresponding normal tissues (Normaln) measured 
in different studies, and d2, the average expression distance between tumors 
(Tumorn) and corresponding normal tissues (Normaln) measured in the same 
studies. The difference (d1−d2) represents the average batch effect due to com-
parisons across different studies. To account for the batch effect the differ-
ence (d1−d2) was subtracted from all expression distances calculated between  
different studies.

Identification of metabolic pathways with significant expression changes. 
We used two different approaches to identify metabolic pathways with signifi-
cant expression changes. The two approaches resulted in very similar results. In 
the first approach, which was used for all calculations presented in the paper, 
for each gene a, we calculated its expression change in tumor sample i relative 
to the corresponding normal samples, ∆E x ya

i
a
i

a= −log (log )2 2Average  ,  
where xa

i  is the expression in tumor sample i, and ya is the expression in the s 
corresponding normal samples (y1, y2,…,ys). Wilcoxon signed-rank test of ∆E 
for all genes within a metabolic pathway was then used to determine the sig-
nificance of up- or downregulation of the pathway in that tumor sample. In the 
second approach, for each gene a, we calculated the z-score of its expression in 
tumor sample i relative to the distribution of its expression values in the s corre-
sponding normal samples, z x y ya

i
a
i

a a= −(log (log ))/ (log )2 2 2Average s ,  
where σ(log2 ya) is the s.d. Wilcoxon signed-rank test of z was then used to 

determine the significance of up- or downregulation of each pathway in that 
tumor sample. The pathway expression heterogeneity based on the second 
approach is shown in Supplementary Fig. 4c.

Statistical significance of the observed metabolic pathway expression  
patterns. We used randomized expression data to assess the statistical sig-
nificance of the reported pathway expression patterns (Fig. 2). To generate 
the null distributions for the (n m+ ) and (| |n m− ) values we used the real 
expression data and randomly permuted metabolic gene labels while preserv-
ing the pathway sizes. We then calculated the null distributions using the 
same procedure as the one applied to the real data. Supplementary Figure 3 
shows the null distributions for the 10 top-regulated pathways (pathways with 
highest (n m+ ) values in Fig. 2) based on 1,000 random permutations of the 
expression data.

Pathway expression heterogeneity across tumor samples of the same tumor 
type. To investigate the pathway expression heterogeneity across tumor sam-
ples of the same tumor type, we introduced a pathway-specific heterogeneity 
metric H=|n−m|/(n+m), where n is the fraction of tumor samples of a certain 
tumor type in which the pathway is significantly upregulated, and m is the frac-
tion of samples in which the pathway is significantly downregulated. According 
to this definition, for high H values the pathway shows consistent expression 
changes across different samples of the same tumor type, that is, the pathway 
is mostly upregulated or mostly downregulated. On the other hand, for small 
H values the pathway expression is variable, that is, in some tumor samples 
the pathway is significantly upregulated, while in other samples of the same 
tumor type the pathway is significantly downregulated. The distribution of  
H values across 22 tumor types or 16 tumor types of different tissue-of-origin  
for the 10 top-regulated pathways (pathways with highest (n+m) values),  
is shown in Supplementary Fig. 5. The 16 tumors types of different tissue-
of-origin were obtained from 22 tumor types by considering samples of the 
three types of brain cancers, the two types of breast cancers and the four types 
of lymphomas together, respectively.

Calculation of significant relationships between metabolic pathway expres-
sion and expression of non-metabolic cancer/signaling genes. The context 
likelihood of relatedness (CLR) method18 is based on mutual information 
between expression profiles. CLR was used to identify significant relationships 
between 214 non-metabolic cancer/signaling genes annotated in the KEGG 
database and the 87 KEGG metabolic pathways (Supplementary Table 5). 
The set of 214 non-metabolic cancer/signaling genes was assembled using the 
following two criteria: (i) genes either from the 14 KEGG cancer or 25 KEGG 
signaling pathways (Supplementary Table 9), and (ii) not within any of the 87 
KEGG metabolic pathways. For each gene a in each tumor sample i, the expres-
sion change ∆Ea

i  was calculated. And the mutual information (MI) between 
each non-metabolic cancer/signaling gene i and each metabolic pathway j was 

calculated across all tumor samples in our study: MI E E nij i a j
a

nj
= ∑MI( , / )∆ ∆ ,  

where nj is the number of genes within the pathway j. All mutual information 
values were computed using 10 bins of ∆E; the calculated values were not 
sensitive to the exact number of bins used. The CLR interaction Z-score for 

each gene i and pathway j pair Z z zij i j= +( )/2 2 2  was calculated using (i) the  

z-score (zi) of MIij relative to the distribution of {MIi,1, MIi,2,…,MIi,87}, and (ii) 
the z-score (zj) of MIij relative to the distribution of {MI1,j, MI2,j,…,MI214,j}. In 
Supplementary Table 8 we show the identified significant relationships (with 
z-score > 2.0) for each metabolic pathway.

Principal component analysis. The nine meta-pathways used for the principal 
component analysis were compiled by combining genes from correspond-
ing metabolic pathways in the KEGG and BioCyc databases. To perform the 
principal component analysis (PCA), we calculated the p-by-q matrix D for 
tumor-to-normal expression changes of the meta-pathways, where p = 466 (the 
total number of tumor samples in our study) and q = 9 (the number of meta- 
pathways). We used two different approaches to calculate D. The two approaches 
resulted in very similar principal components. In the first approach, the  
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(i, j)-element of the matrix Dij is the average gene-specific expression changes 

in tumor sample i across nj genes within meta-pathway j: D E nij a
i

a

nj

j=
=
∑ ∆
1

/ .  

In the second approach, Dij is the average gene-specific z-scores: 

D z nij a
i

a

nj

j=
=
∑
1

/ . Principal components were then obtained using the 

covariance method, that is, we first centered the columns of D by subtract-
ing the column means, and then calculated a covariance matrix based on 
D. The covariance matrix was then diagonalized and the eigenvectors and 
eigenvalues were calculated. The results of the PCA analysis based on the first 
approach are shown in Table 1 and the results based on the second approach 
in Supplementary Table 10. We also explored the influence of genes shared 
between meta-pathways on the PCA results. The results obtained when all 
overlapping genes were excluded (Supplementary Table 11) were very similar 
to the results with all meta-pathway genes.

Human metabolic annotations used for isoenzyme expression analysis.  
A human metabolic network21 was used for isoenzyme expression analysis. 
The network contains 1,496 genes, 2,712 compartment-specific metabolites, 
and 3,743 internal and exchange reactions. In the analysis we used 2,307 net-
work reactions that are associated with at least one known metabolic gene. 
Proteins that are responsible for catalysis of identical reactions and are not 
members of the same complex were considered as isoenzymes. In total, the 
network contains 667 metabolic reactions with at least two isoenzymes.

Calculation of distances between isoenzyme expression patterns. The 
Kullback-Leibler (KL) divergence was used to quantify the changes in the 
relative expression of isoenzymes for pairs of expression profiles. For each 
sample, the fractional expression of a particular isoenzyme i was first calcu

lated f x xi i i
i

n
= ∑/  (n is the number of isoenzymes catalyzing the reaction 

and xi is the expression value of the isoenzyme i). The flexmix package in 
R was then used to estimate the KL divergence between the discrete dis-
tributions {m(f1), m(f2),…m(fn)} and {g(f1), g(f2),…g(fn)}, where m(f) and 
g(f) are the averages of the two expression profiles over p and q samples  
(x1, x2,…,xp), (x1, x2,…,xq).

Identification of isoenzymes preferentially expressed in specific tumors. 
For each considered isoenzyme we used the nonparametric Mann-Whitney 
U test to determine the significance of its fractional expression changes in the 
tumor samples relative to the normal samples. Specifically, for an isoenzyme i 
we calculated its fractional expression among all isoenzymes associated with 

the same reaction: f x xi i i
i

n
= ∑/ , where n is the number of isoenzymes cata-

lyzing the same reaction, and xi is the expression value of the isoenzyme i. 
We then used the Mann-Whitney U statistic to test the hypothesis that the 
distribution of fi values for tumor samples associated with a particular cancer 
type has significantly larger mean than the distribution of fi values for the 
corresponding normal samples. All the P-values were FDR-adjusted at 5% con-
sidering the total number of tested hypothesis, 22,704 (1,032 isoenzymes times 
22 cancer types). The isoenzymes passing the significance threshold (P < 0.05) 
are reported in Supplementary Table 13. We confirmed the isoenzyme results 
using independently collected expression data from the TCGA consortium50; 
for the confirmation we used four tumor types from TCGA (glioblastoma 
multiforme, breast invasive carcinoma, colon adenocarcinoma, ovarian serous 
cystadenocarcinoma). Using the same tumor type 70% of the isoenzymes in 

Supplementary Table 13 showed the same upregulation behavior in TCGA 
as in the data set analyzed in the paper.

Statistical significance and multiple hypothesis testing. For pathway and 
isoenzyme calculations involving multiple hypothesis testing, all the corre-
sponding P-values were adjusted with the BH procedure49 (using the multtest 
package in R) to control the false discovery rate (FDR) at 0.05. The FDR- 
corrected P-values were used to analyze statistical significances, and unless 
specified otherwise, significance was reported for the adjusted P < 0.05.

Quantitative metabolite profiling of TCA cycle intermediates in colon  
cancer. Sample collection and metabolite extraction. Tumors and surround-
ing grossly normal-appearing tissues were obtained from 10 colon cancer 
patients after surgical treatment. The excised tissues were immediately stored 
at −80 °C. Samples were extracted and prepared for analysis using Metabolon’s 
standard solvent extraction method. The extracted samples were split into 
equal parts for analysis on the GC/MS and LC/MS platforms.

GC/MS. The samples destined for GC/MS analysis were re-dried under  
vacuum desiccation for a minimum of 24 h before being derivatized under 
dried nitrogen using bistrimethyl-silyl-triflouroacetamide (BSTFA). The  
GC column was 5% phenyl and the temperature ramp is from 40 to 300 °C  
in a 16-min period. Samples were analyzed on a Thermo-Finnigan Trace  
DSQ fast-scanning single-quadrupole mass spectrometer using electron 
impact ionization.

LC/MS. The LC/MS portion of the platform was based on a Waters ACQUITY 
UPLC and a Thermo-Finnigan LTQ mass spectrometer, which consisted of an 
electrospray ionization (ESI) source and linear ion-trap (LIT) mass analyzer. 
The sample extract was split into two aliquots, dried, then reconstituted in acidic 
or basic LC-compatible solvents, each of which contained 11 or more injection 
standards at fixed concentrations. One aliquot was analyzed using acidic positive 
ion optimized conditions and the other using basic negative ion optimized condi-
tions in two independent injections using separate dedicated columns. Extracts 
reconstituted in acidic conditions were gradient eluted using water and methanol 
both containing 0.1% formic acid, while the basic extracts, which also used water/
methanol, contained 6.5 mM ammonium bicarbonate. The MS analysis alternated 
between MS and data-dependent MS2 scans using dynamic exclusion.

Data extraction and compound identification. The data extraction of the raw 
mass spec data files yielded information that could be loaded into a relational 
database and manipulated without resorting to BLOB manipulation. Once in 
the database the information was examined and appropriate QC limits were 
imposed. Peaks were identified using Metabolon’s proprietary peak integra-
tion software, and component parts were stored in a separate and specifically 
designed complex data structure. TCA cycle intermediates were identified 
by comparison to library entries of purified standards. The combination of 
chromatographic properties and mass spectra gave an indication of a match 
to the specific compound or an isobaric entity. The collected metabolite data 
are presented in Supplementary Table 17.
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