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Genome-scale metabolic reconstructions can serve as important tools for hypothesis generation and
high-throughput data integration. Here, we present a metabolic network reconstruction and flux-
balance analysis (FBA) of Plasmodium falciparum, the primary agent of malaria. The compartmen-
talized metabolic network accounts for 1001 reactions and 616 metabolites. Enzyme–gene
associations were established for 366 genes and 75% of all enzymatic reactions. Compared with
other microbes, the P. falciparum metabolic network contains a relatively high number of essential
genes, suggesting little redundancy of the parasite metabolism. The model was able to reproduce
phenotypes of experimental gene knockout and drug inhibition assays with up to 90% accuracy.
Moreover, using constraints based on gene-expression data, the model was able to predict the
direction of concentration changes for external metabolites with 70% accuracy. Using FBA of the
reconstructed network, we identified 40 enzymatic drug targets (i.e. in silico essential genes), with no
or very low sequence identity to human proteins. To demonstrate that the model can be used to make
clinically relevant predictions, we experimentally tested one of the identified drug targets, nicotinate
mononucleotide adenylyltransferase, using a recently discovered small-molecule inhibitor.
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Introduction

Malaria is an ancient disease, which can be dated back to 2800
BC (Nerlich et al, 2008), and remains one of the most severe
public health challenges worldwide. Currently, about half of
the Earth’s population is at risk from this infectious disease
according to the World Health Organization (WHO, 2008).
Malaria inflicts acute illness on hundreds of millions of people
worldwide and leads to at least one million deaths annually
(Baird, 2005; WHO, 2008). It ranks as a leading cause of death
and disease in many developing countries, where the most
affected groups are young children and pregnant women
(WHO, 2008). The disease is transmitted to humans by the
female Anopheles mosquito and is caused by at least five
species of Plasmodium parasites. The life cycle of the parasite
is highly complex and includes various hosts and tissue types.

During a blood meal, sporozoites are transmitted from the
mosquito to humans and initiate infection in the liver where
they reproduce prolifically but are asymptomatic. In the next
stage of infection, the parasites are released from the liver cyst
into the bloodstream in the form of merozoites, where they
invade red blood cells (RBCs) and reproduce asexually (Aly
et al, 2009). The destruction of RBCs coupled with the
significant load imposed on the host metabolism is ultimately
responsible for the major clinical symptoms of malaria, which
are often fatal (Haldar and Mohandas, 2009).

Although several anti-malarial drugs are currently available,
most of them are losing efficacy due to acquired drug
resistance in the most lethal causative agent, Plasmodium
falciparum (Wongsrichanalai et al, 2002; Mackinnon and
Marsh, 2010). The loss of drug efficiency in resistant strains
poses a great threat to malaria control and has been linked to
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increases in worldwide malaria mortality (Hyde, 2007). There
is an urgent need for new anti-malarial drugs coupled with
better administration strategies. Understanding the molecular
mechanisms and interactions of the parasite’s cellular
components is essential for identification of new drug targets,
especially given the difficulties associated with in vivo drug
testing (Liu et al, 2008).

Various systems biology approaches have been applied to
improve our understanding of P. falciparum physiology and to
facilitate drug development (Dharia et al, 2010). The sequen-
cing of the P. falciparum genome has provided researchers
with a complete collection of parasite proteins and likely
regulatory interactions (Gardner et al, 2002; Carvalho and
Menard, 2005). Several large-scale transcriptome (Bozdech
et al, 2003; Le Roch et al, 2003; Llinas et al, 2006; Hu et al,
2010), proteome (Florens et al, 2002; Lasonder et al, 2002,
2008) and metabolome (Olszewski et al, 2009) analyses have
been conducted in order to dissect functional interactions and
define essential biological pathways. In addition to experi-
mental studies, several databases have been developed to
integrate functional knowledge of the parasite and its
metabolism. For example, PlasmoCyc is an integrated database
that links genomic data, protein annotation, enzymatic
reactions, and pathway information (Yeh et al, 2004); the
Malaria Parasite Metabolic Pathway Database (MPMP),
on the other hand, is a manually curated resource that
assembles annotated enzymes into likely metabolic pathways
(Ginsburg, 2010).

A stoichiometric representation of metabolism can be
effectively used to study functional properties of biochemical
networks using a growing number of computational methods
(Price et al, 2004). For example, flux-balance analysis (FBA)
considers steady-state distributions of metabolic fluxes satis-
fying a set of biophysical constrains, such as bounds and mass
balance of fluxes (Orth et al, 2010). Given the applied
constraints, a likely distribution of fluxes in the network can
be obtained by maximizing an appropriate objective function
(e.g. biomass production) (Varma and Palsson, 1994) or
applying minimal perturbation principles (Segre et al, 2002;
Shlomi et al, 2005). The analysis of flux-balanced genome-
scale metabolic networks is useful not only for the discovery of
essential genes and potential drug targets, but also as a tool to
better understand species-specific biology (Breitling et al,
2008; Oberhardt et al, 2009). For example, among other
applications, these models have been used to identify minimal
media requirements for growth (Chavali et al, 2008), explore
metabolic weaknesses in bacterial pathogens (Navid and
Almaas, 2009), integrate gene expression and other types of
data (Colijn et al, 2009), and investigate objective functions
important under different growth conditions (Schuetz et al,
2007). Given the complex life cycle of Plasmodium, a flux-
balanced model of this organism is of direct relevance to the
ongoing search to identify new therapeutic drug targets.

In this study, we reconstructed the genome-scale flux-
balanced metabolic network of P. falciparum and used it to
perform a systems-level analysis of the parasite’s metabolism.
On the basis of in silico gene deletions, we identified potential
new anti-malarial drug targets with low sequence identity to
human proteins. One of these targets, nicotinate mononucleo-
tide adenylyltransferase (NMNAT), was experimentally tested

in a growth inhibition assay using a recently discovered small-
molecule inhibitor. We also illustrate, using a previously
published methodology, how the reconstructed metabolic
model can be used to integrate flux analysis with expression
data to more accurately simulate the physiology of this
complex eukaryotic pathogen.

Results

Scale of the reconstructed flux-balanced
metabolic network

The reconstructed flux-balanced model is based on gene-
reaction associations reported in public domain databases as
well as on a careful literature analysis. We used well-curated
microbial metabolic models and enzyme databases to deter-
mine the stoichiometry of most reactions. To produce a
functional reconstruction, we also searched the literature for
missing steps necessary for the model to produce a set of
required biomass components (see Materials and methods).
The model accounts for 366 genes, corresponding to 7% of all
genes identified in P. falciparum. Compared with 61 metabolic
models of various organisms compiled by Feist et al (2009),
our model ranks 10th in terms of the smallest number of genes.
Not surprisingly, the other metabolic models with small gene
numbers include many parasitic/symbiotic species, such as
Mycoplasma genitalium, Buchnera aphidicola, Haemophilus
influenzae, and Helicobacter pylori. The P. falciparum network
also includes 616 metabolites and 1001 reactions, 657 of which
are metabolic transformations (Table I). In addition, there are
233 reactions corresponding to transport between different
cellular compartments and 111 input–output exchange reac-
tions that allow extracellular metabolites to enter and end
products to be excreted from the network.

The metabolic reconstruction includes four distinct com-
partments: parasite cytosol, mitochondria, apicoplast (a non-
photosynthetic plastid), and the extracellular space (representing
the host cell cytosol and host serum). The majority of all reactions
(50%) occur in the cytosol. The apicoplast accounts for 10% of all
reactions, such as the synthesis of isopentenyl diphosphate, fatty
acids, and heme (Ralph et al, 2004). A special reaction is included
in the model to account for the biomass components and essential
metabolites needed for growth (Supplementary Table S1). Supple-
mentary information provides a complete list of all network
reactions and metabolite abbreviations.

Table I Characteristics of the reconstructed metabolic network of P. falciparum

Reactions 1001 Metabolites 616
Cytosolic reactions 503 Cytosolic metabolites 537
Mitochondrial reactions 49 Mitochondrial

metabolites
83

Apicoplast reactions 105 Apicoplast metabolites 135
Transport reactions 233 Extracellular

metabolites
159

Cytosolic transport
reactions

132
Genes

366

Mitochondrial transport
reactions

51

Apicoplast transport
reactions

50

Exchange reactions 111
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Excluding metabolite-exchange reactions, 74% of the
reactions in the model are directly associated with
P. falciparum genes, which compares well to other models of
eukaryotes such as the iND750 yeast model (70%) (Duarte
et al, 2004) and the iAC560 model for Leishmania major (63%)
(Chavali et al, 2008). The remaining reactions include
spontaneous transformations that can proceed without enzy-
matic catalysis and reactions required for the proper function-
ing of the metabolic model. Intracellular and inter-
compartmental transport reactions, most of which are not
currently associated with any gene, account for about 6% and
15% of all reactions in the model, respectively (Figure 1A).
Most of the transporter proteins in Plasmodium spp. are
currently uncharacterized. However, it is well established
that the parasite significantly modifies the permeability of
the host cell membrane (Kirk et al, 1999; Martin et al, 2005)
and several metabolic processes occur across different
organelles. For instance, such metabolic pathways as heme
biosynthesis and antioxidant defense have been shown to
involve both host and parasite enzymes localized to multiple
intracellular compartments (Bonday et al, 1997; Koncarevic
et al, 2009). Given the importance of metabolite exchange,
many transport reactions were included in the model,
although the identities of the corresponding genes remain
unknown (Figure 1A).

Transferases and hydrolases comprise the largest fraction of
enzymatic reactions in the network (Figure 1B). In terms of
specific metabolic processes (Figure 1C), most reactions in the
network are related to lipid metabolism, followed by transport
and exchange reactions. In comparison with Saccharomyces
cerevisiae, a free-living eukaryote of similar genome size, the
most significant metabolic difference is the fraction of
reactions involved in amino-acid metabolism (Figure 1C).

About 20% of the reactions in the iND750 yeast metabolic
network (Duarte et al, 2004) are responsible for amino-acid
pathways; in contrast, this fraction is only 7% in P. falciparum.
Amino-acid biosynthesis pathways are absent in P. falciparum
metabolism because of the unique ability of the parasite to
catabolize the erythrocyte hemoglobin (Francis et al, 1997)
and to scavenge free amino acids from the host serum (human
stages) or hemolymph (mosquito stages).

Analysis of in silico single and double gene
deletions

We simulated gene deletions using FBA of the reconstructed
metabolic network. Even though sugars other than glucose do
not support P. falciparum growth in culture (Saito et al, 2002),
in performing the in silico deletions we initially allowed all
exchange reactions to carry non-zero metabolic fluxes, thereby
permitting the potential import and utilization of other
hexoses. Purines, such as inosine and adenosine, which are
not normally included for in vitro culture but can be imported
in vivo (LeRoux et al, 2009), were also made available to the
network. We note that genes identified as essential when all
exchange reactions are allowed will also be essential under
more specific (constrained) conditions. The phenotypic effects
of in silico deletions were classified into four groups: lethal,
growth reducing (growth between 0 and 95% of the wild-type
network), slight growth reducing (growth between 95 and
100%), and with no effect. About 15% of all single gene
deletions (Table II) were lethal, B1% were growth reducing,
and 3.5% were slightly growth reducing.

Out of 366 genes in the P. falciparum metabolic network, 55
genes were predicted to be essential for growth (Supplemen-
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Figure 1 Annotation of reactions in the genome-scale metabolic model of P. falciparum. (A) Number of orphan (non-gene associated) reactions in P. falciparum
grouped by metabolic processes. (B) Reactions grouped by Enzyme Commission (EC) classifications. (C) Reactions grouped by metabolic processes in P. falciparum
and S. cerevisiae (Duarte et al, 2004).
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tary Table S2). To assess the accuracy of these predictions, we
compiled a list of experimentally validated gene knockouts
and phenotypes resulting from targeted inhibitions of enzy-
matic activities with drugs (Table III). In the computational
analysis, we assumed that the drug treatments resulted in a
complete inhibition of targeted enzymatic activities. In this
way, the available drug phenotypes were simulated with
computational deletions of the corresponding genes. In total,
14 metabolic gene knockouts and 25 drug inhibition pheno-
types for genes were retrieved from the literature for P.
falciparum and Plasmodium berghei, a murine malaria
parasite commonly used in experimental studies (Janse and
Waters, 1995; Janse et al, 2006).

The FBA analysis was able to achieve 100% accuracy for
predictions of both essential and non-essential gene knockouts
(14 cases in total). In contrast, about 70% accuracy was
achieved for phenotypes resulting from drug inhibitions of
metabolic enzymes. Interestingly, all mispredicted drug
phenotypes (eight cases) involved genes for which the
computational analysis predicted a non-zero growth pheno-
type, whereas corresponding drugs were lethal to the parasite
in experimental studies. In three cases, inconsistencies
between the FBA predictions and experimental drug inhibi-
tions can be explained by considering functions that are not
explicitly represented in our model. These included the
degradation of spontaneously forming toxic metabolites (e.g.
methylglyoxal), and the synthesis of metabolites that are
involved in the progression between the intraerythrocytic
stages (e.g. sphingolipid, ceramide) (Hanada et al, 2002). The
remaining discrepancies (five cases) can be resolved by taking
into account specific literature-based evidence (Table III, green
rows), that is, by considering nutrient availabilities and
directionality of exchange reactions. Interestingly, in one case,
the source of discrepancy between the model and experiments
was clearly related to off-target drug effects. Specifically, the
inhibitor of enoyl-acyl carrier reductase (FabI), triclosan, has
been shown to kill P. falciparum in vitro and in vivo (Surolia
and Surolia, 2001) despite the fact that its presumed target,
PfFabI, can be deleted with no apparent blood-stage phenotype
(Surolia and Surolia, 2001; Yu et al, 2008; Vaughan et al, 2009);
this deletion phenotype is correctly predicted by our model.

For 15 metabolic genes identified in our analysis as
essential, knockout experiments or drug inhibition assays in
P. falciparum/P. berghei are already available in the literature
(see Table III; Supplementary Figure S2). The remaining
predictions include 24 genes coding for proteins with relatively
low sequence identity (20–40%) to human transcripts
(Supplementary Figure S1; see Materials and methods), and
16 genes with no significant sequence identity to any human

protein (BLAST E-value410�2). This last group comprises six
genes associated with isoprenoid metabolism, three genes
involved in nucleotide metabolism, and genes related to CoA,
shikimate, and folate biosynthesis (Table IV). Nine of the genes
with no homology to human proteins are homologous to plant
proteins; this is consistent with the essential functions of
apicoplast-associated genes in the Apicomplexa (Lim and
McFadden, 2010). These 40 enzymes are of immediate interest
as potential drug targets, as low homology to human proteins
suggests that side effects for drugs targeting these enzymes
may be minimized or avoided. Interestingly, 5 of the 16
enzymes with no detectable homology correspond to enzy-
matic activities (Enzyme Commission (EC) numbers) that are
unlikely to be present in human metabolism according to the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
et al, 2008), HumanCyc (Romero et al, 2005), and UniProt
(Uniprot.Consortium, 2010) databases. Among the predicted
essential genes with low but significant sequence identity to
human transcripts, only aminodeoxychorismate lyase/
synthetase (2.6.1.85, 4.1.3.38, PFI1100w) is associated with
EC numbers not reported in human metabolism. In addition to
genes predicted as essential, nine internal metabolic reactions
with no associated network genes (orphan reactions) were
also predicted to be essential for growth. Four of these
reactions are associated with the shikimate biosynthetic
pathway; three with ubiquinone metabolism, one with
nicotinamide, and one with porphyrin metabolism (Supple-
mentary Table S3).

One metabolic pathway of significant interest in the parasite is
the mitochondrial tricarboxylic acid (TCA) cycle. In most free-
living microbes, this pathway fully oxidizes available carbon
sources to carbon dioxide, in the process generating high-energy
phosphate bonds (ATP/GTP). Within the Plasmodium species,
however, the nature and function of the TCA cycle remains
unclear (van Dooren et al, 2006). In the malaria parasites, the
sole pyruvate dehydrogenase complex, which normally provides
the key link between glycolysis and TCA metabolism, localizes
not to the mitochondrion but to the apicoplast. In that
compartment it is likely to be used primarily to generate acetyl-
CoA for lipogenesis (Foth et al, 2005). Incorporating this fact into
our model, we find that the only TCA cycle enzyme predicted to
be essential is the 2-oxoglutarate dehydrogenase complex. This
enzyme converts 2-oxoglutarate into succinyl-CoA, which is
required for heme biosynthesis. Intriguingly, metabolic-labeling
experiments indicate that the TCA cycle of the parasite also
reduces 2-oxoglutarate to malate, generating acetyl-CoA from
citrate cleavage (Olszewski et al, 2010). A non-zero flux through
this reaction is observed in our model when additional
constraints are applied to mitochondrial transport reactions.

Table II Total number of single and non-trivial double deletion phenotypes

Predicted phenotypea Single deletion (# genes) Single deletion (%) Double deletion (# non-trivial pairs) Double deletions (%)

No effect (NE) 295 80.60 43160+4974 (trivial GR, SGR) 99.85
Lethal (L) 55 15.02 16 0.03
Growth reducing (GR) 3 0.82 48 0.10
Slight growth reducing (SGR) 13 3.55 7 0.01
Total 366 100.0 48 205 100.0

aSingle and double gene deletion predictions were classified into lethal, growth reducing (growth between 0 and 95% of wild type), slight growth reducing (growth
between 95 and 100%), and no effect.
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Table III Literature support for essentiality predictionsa

Gene Reaction EC number Sp Exp Pred Biological process Reference

PFL2510w Chitinase 3.2.1.14 Pber NLb NL Aminosugars metabolism Dessens et al (2001)
PFI0320w Arginase 3.5.3.1 Pber NLc NL Arginine and proline

metabolism
Olszewski et al (2009)

PF14_0200* Pantothenate kinase 2.7.1.33 Pfal L L CoA biosynthesis Spry et al (2005)
PF14_0354*
PF13_0128 b-Hydroxyacyl-ACP dehydratase 4.2.1.58 Pber NLd NL Fatty acid synthesis Vaughan et al (2009)

4.2.1.60
4.2.1.61

PFF0730c Enoyl-acyl carrier reductase (FABI) 1.3.1.9 Pber NLd NL Fatty acid synthesis Vaughan et al (2009);
Yu et al (2008)

PFF1275c 3-Oxoacyl-acyl-carrier protein
synthase I/II (FABB/F)

2.3.1.41 Pber NLd NL Fatty acid synthesis Vaughan et al (2009)

PF08_0095* Dihydropteroate synthetase 2.5.1.15 Pfal L L Folate biosynthesis Zhang and Meshnick (1991)
PFD0830w* Dihydrofolate reductase

Thymidylate synthase
1.5.1.3 Pfal L L Folate biosynthesis

Pyrimidine metabolism
Jiang et al (2000)

2.1.1.45
PF13_0269 Glycerol kinase 2.7.1.30 Pfal NL NL Glycolysis Schnick et al (2009)
PF14_0425* Fructose-bisphosphate aldolase 4.1.2.13 Pfal NLe,q NLc Glycolysis Wanidworanun et al (1999)
PF13_0141* Lactate dehydrogenase 1.1.1.27 Pfal L Lm Glycolysis Razakantoanina et al (2000)
PF13_0144*
PF14_0641* 1-Deoxy-D-xylulose-5-phosphate

reductoisomerase
1.1.1.267 Pfal L L Isoprenoids metabolism Cassera et al (2007)

PF14_0788 Adenylyl cyclase 4.6.1.1 Pber NL NL Isoprenoids metabolism Ono et al (2008)
PF10_0322* Ornithine decarboxylase 4.1.1.17 Pfal Lf Lf Methionine and polyamine

metabolism
Das Gupta et al (2005);
Muller et al (2008);
Ramya et al (2006)

S-Adenosylmethionine
decarboxylase

4.1.1.50

PF11_0301* Spermidine synthase 2.5.1.16 Pfal Lg Lg Methionine and polyamine
metabolism

Haider et al (2005)

PF10_0275* Protoporphyrinogen oxidase 1.3.3.4 Pfal L L Porphyrin metabolism Ramya et al (2007)
PF14_0381* d-Amino-levulinic acid dehydratase 4.2.1.24 Pfal L L Porphyrin metabolism Ramya et al (2007)

PF10_0121* Hypoxanthine phosphoribosyl
transferase

2.4.2.8 Pfal L L Purine metabolism Dawson et al (1993)

PF13_0287* Adenylosuccinate synthase 6.3.4.4 Pfal L L Purine metabolism
Asparagine and aspartate
metabolism

Webster et al (1984)

PFB0295w* Adenylosuccinate lyase 4.3.2.2 Pfal L L Purine metabolism Bulusu et al (2009)
MAL13P1.301 Guanylyl cyclase 4.6.1.2 Pber NLh NL Purine metabolism

Porphyrin metabolism
Hirai et al (2006)

PFF0160c* Dihydroorotate dihydrogenase 2.4.2.8 Pfal L L Purine metabolism Deng et al (2009)
PF10_0289* Adenosine deaminase 3.5.4.4 Pfal Li Li Purine metabolism

Methionine and polyamine
metabolism

Ho et al (2009)

PFE0660c* Purine nucleoside phosphorylase 2.4.2.1 Pfal Lj Lj Purine metabolism
Methionine and polyamine
metabolism

Kicska et al (2002)

PF10_0154* Ribonucleoside reductase 1.17.4.1 Pfal L L Pyrimidine metabolism
Purine metabolism Redox
metabolism

Chakrabarti et al (1993)

PF14_0053*
PF14_0352*
PF10_0225 Orotidine-monophosphate

decarboxylase
4.1.1.23 Pber L L Pyrimidine metabolism Leiden Malaria Research

Group, unpublished data
PF11_0410* Carbonic anhydrase 4.2.1.1 Pfal L L Pyrimidine metabolism

Fatty acid synthesis
Pyruvate metabolism

Krungkrai et al (2008)

PF13_0044* Carbamoyl-phosphate synthase 6.3.5.5 Pfal L L Pyrimidine metabolism
Glutamate metabolism

Flores et al (1997)

PF11_0282* Deoxyuridine 50-triphosphate
nucleotidohydrolase

3.6.1.23 Pfal L NLn Pyrimidine metabolism Nguyen et al (2005)

PF11_0145* Lactoylglutathione lyase 4.4.1.5 Pfal L NLo Pyruvate metabolism Thornalley et al (1994)
PFF0230c*
PF14_0368 Thioredoxin peroxidase 1.11.1.15 Pber NLk NL Redox metabolism Yano et al (2006);

Yano et al (2008)
PFI0925w g-Glutamylcysteine synthase 6.3.2.2 Pber NLb,c NL Redox metabolism

Glutamate metabolism
Vega-Rodriguez et al (2009)

PFI1170c Thioredoxin reductase (NADPH) 1.8.1.9 Pfal L6 L Redox metabolism
Pyrimidine metabolism
Purine metabolism

Krnajski et al (2002)

PFB0280w* 3-Phosphoshikimate ***
1-carboxyvinyl transferase

2.5.1.19 Pfal L L Shikimate biosynthesis Roberts et al (1998)
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We also extended the computational analysis of essential
Plasmodium genes to pairs of genes that are not essential on
their own, but are lethal if deleted simultaneously, that is
synthetic lethal enzyme pairs with non-trivial genetic interac-
tions (Dixon et al, 2009) (see Table II). In total, deletion of 16
gene pairs gave rise to such synthetic lethality in the
unconstrained model. The enzymes that were essential
upon double deletions participate in glycolysis, metabolism
of nucleotides, lipids, porphyrin, the pentose phosphate

cycle, and transport of NO2 and phosphate (Supplementary
Table S4).

The analysis of essential genes in the S. cerevisiae metabolic
network iND750 (Duarte et al, 2004) can be used to put the
results of the P. falciparum in silico deletions into an
appropriate context. To make the proper comparison, we only
considered deletions of genes carrying non-zero metabolic
fluxes in wild-type models of both networks; the focus on non-
zero fluxes is necessary to prevent the difference in network

Table III Continued

Gene Reaction EC number Sp Exp Pred Biological process Reference

PFF1105c* Chorismate synthase 4.2.3.5 Pfal L L Shikimate biosynthesis McRobert and
McConkey (2002)

PFL1870c* Sphingomyelinase 3.1.4.12 Pfal L NLp Sphingomyelin and
ceramide metabolism

Hanada et al (2002)

PF11_0295* Farnesyl diphosphate synthase 2.5.1.10 Pfal L L Terpenoid metabolism Mukkamala et al (2008)
2.5.1.1

PF11_0338 Aquaglyceroporin — Pber NLc NL Transport Promeneur et al
(2007)

PFF1420w Phosphatidylcholine-sterol
acyltransferase

2.3.1.43 Pber NLl NL Utilization of phospholipids Bhanot et al (2005)

aGenes are grouped and sorted by biological process. Yellow rows indicate cases for which the model is unable to reproduce the experimental phenotype. Green rows
highlight cases for which predictions coincide with experiments after specific experimental conditions are included in the simulation. *Drug targets with experimental
evidence, mostly as compiled by Yeh et al (2004). L, lethal; NL, non-lethal; Pber, P. berghei; Pfal, P. falciparum.
bReduced mosquito stage viability.
cSlightly reduced growth.
dLiver stage not viable.
eReduced parasitemia.
fLethal in the absence of putrescine.
gLethal in the absence of spermidine.
hMosquito stage not viable.
iLethal in the absence of inosine and hypoxanthine.
jLethal in the absence of hypoxanthine.
kLower gametocyte production.
lReduced liver stage viability.
mLethal when pyruvate export is not allowed in the model.
nThis activity is required to maintain a low dUTP/dTTP ratio to prevent DNA damage. This is not reflected in the biomass function and cannot be predicted by FBA.
oThis activity is required for detoxification of methylglyoxal, which forms spontaneously and must be eventually converted to lactate and excreted. This cannot be
predicted by FBA.
pSlight growth reducing, sphingomyelinase is required for progression from the trophozoite to schizont stage, this is not captured by our objective function.
qIncomplete inhibition.

Table IV Predicted essential genes with no homologs in the human genome

Gene name Enzyme name EC Biological process

MAL8P1_81 Phosphopantothenoylcysteine decarboxylase 4.1.1.36 CoA biosynthesis
PF07_0018 Pantetheine-phosphate adenylyltransferase 2.7.7.3 CoA biosynthesis
PFF1490w Methenyltetrahydrofolate cyclohydrolase, Methylenetetrahydrofolate

dehydrogenase (NADP+)
3.5.4.9, 1.5.1.5 Folate biosynthesis

MAL13p1_186 1-Deoxy-D-xylulose-5-phosphate synthase 2.2.1.7 Isoprenoid metabolism
PF10_0221 (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase 1.17.7.1a Isoprenoid metabolism
PFA0225w 4-Hydroxy-3-methylbut-2-enyl diphosphate reductase 1.17.1.2a Isoprenoid metabolism
PFA0340w 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase 2.7.7.60a Isoprenoid metabolism
PFB0420w 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase 4.6.1.12a Isoprenoid metabolism
PFE0150c 4-(Cytidine 50-diphospho)-2-C-methyl-D-erythritol kinase 2.7.1.148a Isoprenoid metabolism
PF13_0159 Nicotinate-nucleotide adenylyltransferase 2.7.7.18 Nicotinate and nicotinamide

metabolism
PF14_0697 Dihydroorotase 3.5.2.3 Pyrimidine metabolism
PFE0630c Orotate phosphoribosyltransferase 2.4.2.10 Pyrimidine metabolism
MAL13P1_221 Aspartate carbamoyltransferase 2.1.3.2 Pyrimidine metabolism,

asparagine and aspartate metabolism
MAL13P1_292 Riboflavin kinase 2.7.1.26 Riboflavin metabolism
PF11_0059 Pantothenate transporter — Transport
PF11_0169 Pyridoxine/pyridoxal 5-phosphate biosynthesis enzyme — Vitamin B6 metabolism

aEnzymatic activities not annotated in the human databases.
Bold highlights nicotinate-nucleotide adenylyltransferase, which was selected for experimental validation. Gray shading separates distinct biological processes.
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sizes (S. cerevisiae 750 genes/1266 reactions, P. falciparum 366
genes/1001 reactions) from biasing the results. When both
networks were allowed to simultaneously use all carbon
sources, the fraction of essential genes associated with non-
zero fluxes in P. falciparum was 37%, whereas in S. cerevisiae
it was 5% (Fisher’s exact test, P-valueo10�10). The fraction of
essential genes was also significantly higher in the parasite
when single carbon sources were used in both models. For
example, when glucose was used as the sole source of carbon,
50% of genes were essential in the parasite versus 26% in
yeast (P-value¼10�6). To understand whether the significantly
higher fraction of essential genes in P. falciparum arises
exclusively from a smaller number of isoenzymes in that
network (111 in P. falciparum versus 276 in S. cerevisiae) or if it
is also related to the inherent differences in the networks’
architectures, we performed deletions of all isoenzymes
associated with metabolic reactions, instead of individual
gene deletions. As a result, when networks used all carbon
sources, 39% of the reactions with non-zero fluxes were
essential in P. falciparum, compared with only 6% in
S. cerevisiae (P-valueo10�10). In a glucose minimal media,
62% of the reactions are essential in the parasite and 47% in
yeast (P-valueo10�10). These results demonstrate that a
significantly smaller genetic robustness of the parasite’s
network arises, at least in part, because of a paucity of
alternative metabolic pathways (Wagner, 2005). The lower
redundancy of the P. falciparum network is likely to be a
consequence of the adaptation to the relatively homeostatic
and nutrient-rich environments of the hosts in which it
proliferates (Gardner et al, 2002).

Resolution of disagreements between in silico
predictions and experimental data

Although the presented metabolic model achieves a high
accuracy in predicting phenotypes of the experimental knock-
outs and drug inhibition assays, it is the disagreement between
the model and experiments that often leads to model
improvement (Thiele and Palsson, 2009). Thus, it is important
to discuss the inconsistencies between modeling and experi-
mental results, which were corrected in the process of model
construction. In four cases, the disagreements between the
predicted gene essentiality and experimental results reported
in the literature were resolved through additional flux
constraints. The adjustments included purine nucleoside
phosphorylase (PFE0660c), adenosine deaminase (PF10_
0289), ornithine decarboxylase (PF10_0322), and lactate
dehydrogenase (PF13_0141/PF13_0144). The additional con-
straints applied to the network were based either on specific
experimental conditions or known details of Plasmodium spp.
physiology (Table III, green rows). For example, lactate is
believed to be the main byproduct of glucose metabolism in P.
falciparum (Vaidya and Mather, 2009), and lactate dehydro-
genase is an essential enzyme that regenerates nicotinamide
adenine dinucleotide (NADþ ) from NADH (Berwal et al,
2008). In contrast, in our initial model, pyruvate was exported
as the primary glycolysis byproduct and NADþ was regener-
ated through the transformation of pyrroline-5-carboxylate to
proline (EC: 1.5.1.2). As there is no evidence of extensive
pyruvate export in Plasmodium, a constraint was added to the

corresponding pyruvate exchange reaction. As a result, we
observed reduction of pyruvate to lactate, followed by lactate
export. In the adjusted model, lactate dehydrogenase carried a
non-zero flux and was correctly predicted to be essential for
growth. In the other three cases, constraints on exchange
fluxes were added to reproduce the composition of the media
used in drug inhibition experiments. Specifically, purine
nucleoside phosphorylase has been shown to be essential if
hypoxanthine is not available in the environment (Kicska et al,
2002), whereas adenosine deaminase is essential in the
absence of both inosine and hypoxanthine (Ho et al, 2009).
When the fluxes through the inosine and hypoxantine
exchange reactions were set to zero, the experimentally
observed knockout phenotypes were reproduced. Similarly,
ornithine decarboxylase was correctly predicted to be essential
without putrescine in the growth media (Das Gupta et al,
2005).

In two cases, the inability of our initial model to reproduce
experimental results was due to reactions involving metabolic
dead ends; that is metabolites that are either only produced or
only consumed in the network (Reed et al, 2003). In the first
case, the model was not able to synthesize spermidine. The
synthesis of spermidine from putrescine by spermidine
synthase was accompanied by the production of 5-
methylthioadenosine (MTA) (Haider et al, 2005), which was
a metabolic dead end in the initial model. Consequently, the
spermidine synthesis caused MTA to accumulate, violating the
steady-state assumption of the constraint-based approach.
However, although it is known that in Plasmodium spp. MTA is
first converted to 5-methylthioinosine by adenosine deami-
nase and then recycled into methionine and hypoxanthine
(Ting et al, 2005), not all enzymes involved in these reactions
have been fully characterized. We addressed this problem by
including in the model the PfADA and PfPNP activities,
responsible for the hypoxanthine synthesis from MTA (Ting
et al, 2005), and an additional hypothetical reaction that
converts the resulting by-product, 5-methylthioribose-1-PO4,
to methionine in order to represent the methionine salvage
pathway. The second case was related to the folate biosynth-
esis pathway. In this pathway, the reaction catalyzed by
6-pyruvoyltetrahydropterin synthase (4.2.3.12), in addition to
the folate biosynthesis intermediate 6-hydroxymethyl-7,8-
dihydropterin, is known to produce a small amount of
6-pyruvoyl-5,6,7,8-tetrahydropterin (6PTHP) (Hyde et al,
2008). Initially, both products were included in the same
reaction and, because 6PTHP represented another metabolic
dead end, the cell was not able to synthesize folate. We
resolved this problem by including in the model separate
reactions for each of the two alternative products.

The total number of remaining dead-end metabolites in the
final model (266) is comparable to that of other recently
published genome-scale metabolic networks; for example the
iBsu1103 model for Bacillus subtilis (270 dead-end metabo-
lites; Henry et al, 2009), the iAC560 model of L. major (261;
Chavali et al, 2008), or the iND750 S. cerevisiae model (194;
Duarte et al, 2004). The remaining dead ends in the
Plasmodium network include 109 metabolites that are
consumed but are not currently produced or imported in the
model, 80 metabolites that are produced but not consumed,
and 79 metabolites, associated with reversible reactions, that
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can be either exclusively consumed or produced. As protein
synthesis is not explicitly included in the metabolic model, a
significant number (42) of the remaining dead-end com-
pounds correspond to tRNAs; this compares to 68 dead-end
tRNAs in the iND750 yeast network. Among the other
functional categories associated with a large number of the
metabolic dead ends are lipid metabolism (45%), transport
reactions (15%), the metabolism of carbohydrates (5%),
amino acids (8%), and nucleotides (5%) (Supplementary
information). More precise measurements of the P. falciparum
biomass composition, for example a detailed lipid composition
of the parasite membrane (Hsiao et al, 1991; Mi-Ichi et al,
2006), can be used in the future to significantly shrink the pool
of the remaining dead-end metabolites.

Validation of the predicted drug target nicotinate
nucleotide adenylyltransferase

The most urgent motivation for flux-balance reconstruction of
the pathogen metabolism is to facilitate drug development. To
illustrate the potential of the model to make clinically relevant
predictions, we experimentally tested a predicted target for
which candidate drugs have been reported in other microbial
species. The ideal drug target will be an essential enzyme with
no homolog in the human genome and in a pathway not
currently targeted by any pharmaceutical. On the basis of these
criteria, we selected for validation NMNAT (PlasmoDB ID
PF13_0159, EC 2.7.7.18) (Table IV). This enzyme, a member of
the plasmodial NAD synthesis and recycling pathway,
catalyzes the conversion of nicotinic acid mononucleotide to
nicotinic acid adenine dinucleotide (Figure 2A). NMNAT has
recently been the focus of novel anti-microbial agent develop-
ment because of structural and metabolic differences between
the enzyme in microbial and human cells (Magni et al, 2009).
As NAD(P) is one of the most promiscuous redox molecules in
metabolism, as well as a cofactor for important histone regula-
tory proteins such as sirtuins (Merrick and Duraisingh, 2007),
inhibition of NAD(P) synthesis and recycling should have a
profound impact on parasite metabolism. However, to the best
of our knowledge, this pathway has not been previously
targeted by pharmaceutical interventions in P. falciparum.

Recently, Sorci et al (2009) used a combination of in silico
structure modeling and enzyme inhibition assays to identify
several classes of small molecules that inhibit bacterial
(Escherichia coli and B. subtilis) but not human NMNAT.
Several of these drug candidates were able to inhibit bacterial
growth in culture. We tested two of the designed candidate
compounds (1_03 and 3_02), representing two different
chemotypes, for their ability to inhibit P. falciparum growth
using both the SYBR Green I fluorescence assay (Smilkstein
et al, 2004) to measure DNA synthesis, and microscopic
examination of morphological effects. The two compounds
were tested at a range of concentrations for growth inhibitory
effects in nicotinamide-free culture medium, so as not to
rescue any metabolic blocks induced by the drugs. Nicotina-
mide removal has been previously shown not to affect normal
growth in culture (Divo et al, 1985), which we confirmed
before running our growth assay experiments (data not
shown). Although the compound 3_02 did not significantly

affect parasite’s growth at moderate concentrations (MIC50

4100 mM), the compound 1_03 exerted an inhibitory effect in
a growth assay (MIC50 ¼ 50mM; Supplementary Figure S2)
comparable to that previously observed for bacteria (MIC50

480 mM for E. coli, MIC50 ¼10 mM for B. subtilis). At 100 mM,
the compound 1_03 completely blocked host cell escape and
reinvasion by arresting parasites in the trophozoite growth
stage (Figure 2B). Importantly, the human NMNAT isoforms
are insensitive to the compound at least up to the concentra-
tions used in our assay (Sorci et al, 2009). This suggests that
the parasite NMNATenzyme and, more generally, the NAD(P)
synthesis pathway are indeed potentially effective and
druggable targets. The experimental results also highlight the
ability of our model to identify promising candidates for
pharmaceutical intervention.

Prediction of metabolite concentration changes
based on expression data

Genome-scale metabolic networks can be used not only to
predict the effects of gene deletions, but also as a tool for the
integration of diverse genomic and physiological data (Brei-
tling et al, 2008; Oberhardt et al, 2009). For example,
information on nutrient availability, uptake rates, and max-
imal rates of internal reactions can be used to further constrain
the space of feasible metabolic fluxes. To illustrate the ability of
the model to combine genomic data, we investigated whether
available gene-expression data sets can be used to predict
shifts in concentrations of external metabolites caused by the
P. falciparum exchange fluxes at different developmental
stages. Investigation of the exchange fluxes is essential for
understanding perturbations caused by parasitic infections in
the metabolic state of their host tissues, and, consequently,
main mechanisms of pathogenesis. As the FBA operates in the
space of the fluxes and not in the space of metabolic
concentrations, the model cannot be directly used to predict
absolute concentration changes. Nevertheless, it is possible to
use the model to investigate the direction of concentration
changes for external metabolites, following the simple logic
that an increase in the uptake rate or decrease in the excretion
(output) rate should lead to a drop in the concentration of the
corresponding external metabolite; similarly, an uptake rate
decrease or excretion rate increase should increase the
metabolite concentrations.

Although gene-expression level does not perfectly correlate
with the flux through the associated enzyme (Daran-Lapujade
et al, 2004; Shlomi et al, 2008), the recent study by Colijn et al
(2009) demonstrated that mRNA abundance data, if used as
additional constraints on maximal reaction fluxes, can
significantly improve stoichiometric model predictions. For
instance, if the expression level of a particular enzyme is low, it
is unlikely that the enzyme will be used by the metabolic
network to carry a large flux. Consequently, it should be
possible to use gene-expression data to obtain a more accurate
view of the in vivo metabolic state. To test this, we used DNA
microarray results collected from synchronized cultures of the
P. falciparum 3D7 strain during the RBC phase of the parasite’s
life cycle (Llinas et al, 2006; Olszewski et al, 2009). The
expression data were collected at the ring, trophozoite, and
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schizont developmental stages (see Materials and methods).
Following Colijn et al (2009), the maximum flux allowed
through enzymes was constrained proportionally to the
relative expression level of the corresponding genes.

We compared the accuracy of our predictions to the
experimentally measured metabolic changes in Plasmodium-
infected RBCs (Olszewski et al, 2009). In Figure 3, we show the
predicted and experimentally measured changes, indicating
either an increase or decrease in metabolic concentrations for
the transition from the ring to trophozoite and from
trophozoite to schizont stages. The predicted shifts in
metabolic concentrations agree with the experimental results
in 70% of the measurements (binomial, P-value¼9�10�4). In
addition, we found a significant correlation between the
magnitudes of the change in metabolite concentrations and the
predicted flux values (Pearson’s correlation: 0.34, P-value¼
6�10�3, Spearman’s correlation: 0.25, P-value¼0.04).

In order to further investigate the statistical significance of
the results, we repeated flux predictions after randomly
shuffling expression values between P. falciparum genes. In
only 2% of these random trials, the accuracy of the predictions

made with the shuffled data were higher than those obtained
using the original expression values (Supplementary Figure
S3). To explore the effects of multiple optimal FBA solutions
(Mahadevan and Schilling, 2003) on the prediction accuracy,
we used the centering hit-and-run algorithm (Kaufman and
Smith, 1998), implemented in the COBRA toolbox (Becker
et al, 2007), to randomly sample the solution space associated
with the expression constraints. The 70% accuracy value,
obtained for a single solution, is close to the mean of solutions
sampled from alternative optima (mean 0.69, s.d. 0.05; see
Supplementary Figure S3). Moreover, there is a significant
difference (Mann–Whitney U, P-valueo10�10) between the
results for randomized expression values and those based on
the multiple alternative optima. These results illustrate the
ability of the model, with appropriate constraints, to predict
physiological changes unrelated to gene knockouts. It also
suggests that expression and metabolomics measurements,
which are being rapidly accumulated for various stages of
parasite growth (Winzeler, 2008; Kafsack and Llinas, 2010),
can be integrated with the model to gain a better under-
standing of the P. falciparum physiology.
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Figure 2 Small-molecule inhibition of the parasite nicotinate mononucleotide adenylyltransferase (NMNAT). (A) Schematic of the P. falciparum NAD(P) synthesis and
recycling pathway determined from the genome sequence. Nicotinamide (NM) and nicotinic acid (NA) can be scavenged from the host. Compound 1_03 is an inhibitor
targeting NMNAT. (B) Compound 1_03 causes growth arrest of intraerythrocytic P. falciparum. Cultures were resuspended in niacin-free medium containing 0 or 100mM
of compound 1_03 at early ring stage and observed for 66 h (see Materials and methods). Untreated parasites undergo normal development and reinvasion, whereas
drug-treated parasites arrest at the trophozoite (‘troph’) stage and do not reinvade. NM, nicotinamide; NA, nicotinic acid; NaMN, nicotinate mononucleotide; NaAD,
nicotinate adenine dinucleotide; NAD(P)þ, nicotinamide adenine dinucleotide (phosphate), reduced; NMase, nicotinamidase; NPRT, nicotinate phosphoribosyl-
transferase; NMNAT, nicotinate mononucleotide adenylyltransferase; NADS, NAD synthase; NADK, NAD kinase.
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Discussion

The presented flux-balanced model can serve as a valuable
tool for quantitative predictions of P. falciparum metabolic
states under various growth conditions and perturbations. The
results of in silico gene deletions demonstrate that the model
achieves high accuracy in reproducing available experimental
measurements. In addition, our analysis suggests several
dozen essential metabolic targets for therapeutic intervention.
Although several studies that assemble and analyze plasmo-
dial metabolic pathways have been performed previously (Yeh
et al, 2004; Ginsburg, 2006, 2009, 2010), our contribution is
important because the genome-scale model can be used to
investigate and predict genetic perturbations from a network-
level perspective.

Interestingly, our results suggest a limited degree of
robustness in the P. falciparum network, which should lead
to a relatively high-success rate for inhibitors of metabolic
genes. It is possible that the small robustness of the
reconstructed model, for example in comparison with the
yeast metabolic network, is due primarily to unannotated
P. falciparum genes without significant homology to known
enzymes in other organisms. To investigate this possibility
further, we used the available collection of single metabolic
gene knockouts/inhibitions in P. falciparum or P. berghei
(Table III) and all metabolic gene knockouts in S. cerevisiae
(Giaever et al, 2002). We calculated the fraction of orthologs
for essential metabolic knockouts in the parasite, which are
also essential in yeast, and, vice versa, the fraction of orthologs
for essential metabolic knockouts in yeast, which are essential
in the parasite (see Supplementary Table S5). Interestingly,
while only about half of the orthologs for essential metabolic
genes in P. falciparum are also essential in S. cerevisiae, all
essential metabolic genes we analyzed in yeast are essential in

the parasite (Supplementary Table S5; Fisher’s exact test,
P¼0.04). This result independently supports the conclusion of
the flux-balance simulations about the relatively small
robustness of the P. falciparum network.

We anticipate several immediate extensions of our work.
First, the presented network can be used for effective
integration of multiple genomic data types. For example,
known regulatory interactions can be incorporated into the
model (Covert and Palsson, 2002). Accurate measurements of
gene expression (Hu et al, 2010), key protein–DNA regulatory
interactions (De Silva et al, 2008), and post-translational
modifications (Chung et al, 2009) in the parasite will be
especially important for modeling the dynamic behavior of the
network under varying environmental conditions. Second, it
will be important to model exchanges and interactions
between the metabolic networks of the parasite and its hosts.
The analysis of the combined parasite–host metabolic network
should significantly improve understanding of the P. falcipar-
um vulnerabilities. For example, several host cell enzymes are
actively used by the parasite during its life cycle (Dhanasekar-
an et al, 2004; Ting et al, 2005). Although we did not consider
these human enzymes in our analysis, they can be easily
included in future applications of the model. The available
global flux-balanced metabolic human network (Duarte et al,
2007), metabolic network specifically active in the liver (Zhao
et al, 2010), and well-curated models of human RBC
metabolism (Joshi and Palsson, 1989a, 1989b, 1990a, 1990b;
Jamshidi et al, 2001) make such combined analyses possible.
Third, it will be interesting to reconstruct stoichiometric
metabolic networks for other clinically relevant Plasmodium
species (e.g. P. vivax, P. malariae, P. ovale, and P. knowlesi) as
well as the important model species P. berghei and Plasmo-
dium yoelii. The comparative analysis of these networks may
reveal important physiological and evolutionary differences
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Figure 3 Comparison between the predicted and experimentally measured shifts in metabolite concentrations in infected red blood cells. UP/DOWN indicates direction
of experimentally measured changes in metabolic concentrations in infected versus uninfected cells. Blue color indicates agreement between experiment and
predictions, whereas yellow indicates disagreement. In most cases (70%, P-value¼9� 10�4), the shifts in metabolic concentrations from one stage to the next can be
predicted based on changes in the P. falciparum metabolic exchange fluxes. The in silico predictions of exchange fluxes were made based on the expression-
constrained flux-balance analysis (Colijn et al, 2009). Briefly, for genes with available mRNA-expression data, the maximum flux through the associated metabolic
reactions was constrained proportionally to their expression level; with the highest expression value corresponding to the maximum allowed flux.
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between Plasmodium spp., and also help in the identification
of common metabolic drug targets.

Taking into account the global health burden of malaria, it is
essential to develop and implement new effective pharmaceu-
ticals as quickly as possible. Systems biology approaches can
be used to significantly facilitate drug identification and
development (Yao and Rzhetsky, 2008; Kuhn et al, 2010). To
date, we have only begun to see the application of such
integrative methods in the context of malaria research
(reviewed in Dharia et al, 2010). We believe that the presented
network represents an important step in this direction. The
experimental validation of a candidate drug, compound 1_03,
targeting the parasite NMNAT illustrates the ability of the
model to speed up development of novel anti-malaria targets
and pharmaceuticals. Importantly, although the identified
compound is available, it has not been previously tested
against Plasmodium spp. Even though 1_03 inhibited parasite
growth only at relatively high concentrations (MIC50¼50mM),
these were comparable to the inhibitory concentrations for the
bacteria against which the drug was initially developed (Sorci
et al, 2009). The incomplete growth inhibition at lower
compound concentrations could be explained by incomplete
drug inhibition. Our model predicts linear decrease in the
P. falciparum biomass production as the level of NMNAT
inhibition increases; for example, 90% inhibition results in
90% growth decrease. As Sorci et al initially screened for
compounds that could selectively inhibit pure NMNAT
enzyme, these compounds have not been optimized for
cellular permeability, accumulation, or other pharmacokinetic
parameters, and thus should primarily serve as a structural
basis for further malaria drug development.

Future improvements to the reconstructed P. falciparum
metabolic network, including adding experimental details for
missing activities and precise metabolic measurements neces-
sary to describe the growth-related objective function, will
lead to a better understanding of parasite physiology.
Ultimately, such models should significantly accelerate the
identification of desperately needed new drug leads against
this devastating disease.

Materials and methods

Genome-scale metabolic reconstruction

The reconstruction process started with the identification of enzyme-
coding genes in the P. falciparum genome. We considered a variety of
resources, including PlasmoDB (Aurrecoechea et al, 2009), the MPMP
(Ginsburg, 2006), PlasmoCyc (Yeh et al, 2004), and KEGG (Kanehisa
et al, 2008). The identified enzymes were mapped to the corresponding
metabolic reactions by consulting several well-studied metabolic
models, including the iAF1260 model for E. coli (Feist et al, 2007),
the iND750 model for S. cerevisiae (Duarte et al, 2004), the genome-
scale human metabolic network by Duarte et al (2007), and the KEGG
database (Kanehisa et al, 2008). On the basis of this set of enzymatic
activities and their stoichiometry, we used FBA to see if the network
was able to produce a set of basic biomass components; e.g. amino
acids, lipids, nucleotides, and cofactors. For each metabolite that the
network was unable to synthesize, we searched the literature for
relevant publications concerning pathways and genes associated with
the metabolite production or transport (relevant publications are
included as notes in Supplementary information). Network enzymes
were assigned to different cellular compartments based on experi-
mental evidence, when available, and on computationally predicted
localization information (Waller et al, 1998; Ralph et al, 2004; Chan

et al, 2006; van Dooren et al, 2006). Transport and exchange reactions
reported in the literature or in databases such as PlasmoDB and MPMP
were initially included in the model. We added additional transport
reactions required for production of the biomass components. All
metabolic and transport reactions were used to formulate a stoichio-
metric flux-balance model (Edwards et al, 1999). The model was
improved following an iterative procedure as previously described
(Feist et al, 2009; Thiele and Palsson, 2010).

The assembled network was manually inspected and compared
with the MPMP (Ginsburg, 2010). Metabolic network gaps (Kharch-
enko et al, 2006) were identified and included in the assembled
network model (Mullin et al, 2006; Quashie et al, 2008). The reactions
for which no literature support is available and which are not essential
for the biomass production were removed from the network.
Additional adjustments related to reaction directionalities and
metabolite availabilities were made following the computational
analyses described in this work.

As the P. falciparum biomass objective function cannot be
completely established based on the available literature, in our
calculations we used a modified version of the yeast objective function
reported in the iND750 model (Duarte et al, 2004). The objective
function modifications included the lipid composition, which was
adjusted as reported for Plasmodium (Hsiao et al, 1991), and amino
acid and nucleotide compositions adjusted based on the proteome and
genome sequences weighted by available expression data (Llinas et al,
2006). In particular, the percent prevalence of each ribonucleotide and
amino acid across all open reading frames (ORFs) was calculated as
the relative frequency of each monomer; the counts at each ORF were
multiplied by the ORF’s expression level (when available). The percent
prevalence of the dNTPs was derived from the genome AþTcontent of
80.6%. These percentages were converted to mmol/gDWas described
(Chavali et al, 2008). Systems Biology Research Tool (Wright and
Wagner, 2008) was used to perform FBA (Edwards et al, 1999) of the
network, including single and double in silico deletions of network
enzymes. The reconstructed network was able to either synthesize or
import all the biomass components presented in Supplementary Table
S1. The assembled metabolic model is available as an Excel
spreadsheet (Supplementary information) and in the Systems Biology
Markup Language (SBML) format (Supplementary information). The
SBML model was submitted to the BioModels database (Le Novere
et al, 2006) with accession number MODEL1007060000.

Parasite culture, growth, and drug inhibition
assays

The cultures of P. falciparum were maintained and synchronized by
standard methods (Trager and Jensen, 1976; Lambros and Vanderberg,
1979). Briefly, RBCs, infected by P. falciparum (3D7 strain), were
grown in the RPMI 1640 culture medium supplemented with sodium
carbonate (2 mg/ml), hypoxanthine (100mM), Albumax II (0.25%),
and gentamycin (50mg/ml) in a humidified incubator at 5% CO2, 6%
O2, and 371C. The growth synchronizations were carried out by
incubating parasite-infected RBCs in phosphate-buffered saline (PBS)
containing 5% w/v sorbitol for 5 minutes at room temperature,
washing once with sorbitol-free PBS, and resuspending in culture
medium.

The compounds 1_03 and 3_02 were acquired from ChemDiv
(http://chemdiv.emolecules.com; ChemDiv IDs 8003-6329 and 5350-
0029, respectively) and resuspended at 100 mM in DMSO. Growth
inhibition studies were carried out using the SYBR Green I fluorescence
assay (Smilkstein et al, 2004). Briefly, synchronized parasite cultures
(early ring stage, 1% parasitemia, 1% hematocrit, 100 ml total volume)
were suspended in nicotinamide-free RPMI 1640 containing 0.1%
DMSO and differing concentrations of drug in 96-well plates. After 72 h
incubation, the plates were frozen at �801C overnight, then thawed
and mixed with 100 ml lysis buffer (20 mM Tris–HCl, pH 7.5; 5 mM
EDTA; 0.008% w/v saponin; 0.08% v/v Triton X-100; 1� SYBR Green
I) per well, incubated 1 h at room temperature and quantified using a
BioTek SynergyMX plate reader (excitation 488 nm, emission 522 nm).
The concentrations 0, 0.1, 1, 5, 10, 50, 100, and 250mM were tested in
triplicate in two independent growth assays.
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Using an expression-constrained network to predict
shifts in external metabolite concentrations

In the expression-constrained flux analysis, we used P. falciparum
expression data (Olszewski et al, 2009) as described previously in
Colijn et al (2009). Specifically, for genes with available mRNA-
expression data, the maximum flux through the associated metabolic
reactions was constrained proportionally to their expression level;
with the highest expression value corresponding to the maximum
possible metabolic flux. In order to obtain absolute expression values,
rather than the ratios between the microarray intensities at a given
time point and those of a pooled sample, we multiplied each ratio with
the average sum of the median intensity across the full intraerythro-
cytic developmental cycle (Llinas et al, 2006).

The ring, throphozoite, and schizont developmental stages in
cultures were defined for hours 1–18, 19–30, and 31–48 after
synchronization with D-sorbitol, respectively. In the analysis, we used
intracellular RBC metabolite concentration data obtained by Olszewski
et al (2009). We compared the changes in metabolite abundances
between infected and uninfected RBCs, from one development stage to
the next. For each metabolite, the predicted concentration changes
were considered to agree with experimental data, if the metabolite
consumption in the network increased (or the metabolite production
decreased) when the experimentally measured metabolite concentra-
tion decreased, or alternatively, if consumption of the metabolite
decreased (or production increased) when the metabolite concentra-
tion increased.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (http://www.nature.com/msb).
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