
More than 300 complete microbial genomes 
have been sequenced since the publication of 
the Haemophilus influenzae genome 12 years 
ago1 and thousands of genomes are currently 
in the sequencing pipeline. The availability 
of these genomic ‘parts lists’ has spurred 
intense interest in how the interaction of 
these parts determines cellular physiology. 
This systems-biology perspective seeks to 
describe the emergent properties (see Glossary) 
of a complex system — that is, functions of 
an organism that cannot be understood (or 
even defined) from isolated components, 
but emerge if all parts are integrated. Global 
stoichiometric models of microbial metabolism 
have been successful in predicting such emer-
gent properties, in particular for well-studied 
organisms2 (BOX 1).

The main ingredient of a stoichiometric 
model is a comprehensive description of the 
biochemical connectivity between cellular 
metabolites (a stoichiometric matrix), which 
is similar to classical biochemical-pathway 
maps (BOX 1). Currently, the information that 
is required for such models is derived pri-
marily from automated genome annotations 
and computational predictions, which, for 
well-studied organisms, are refined by careful 
manual curation based on published litera-
ture and comparative genomics3,4. Here we 
discuss new analytical strategies that enable 
the experimental completion and expansion 

of these cellular metabolic models (FIG. 1). 
Such expansion will be crucial as we move 
towards those areas of metabolism that dis-
tinguish organisms rather than the conserved 
core that unites them. We highlight a number 
of technological advances that could allow 
the de novo reconstruction of large unexplored 
parts of the metabolic map directly from 
experimental observations. In particular, 
we discuss how ultra-high-resolution mass 
spectrometry allows the identification of 
metabolites and their chemical relation-
ships, how correlation analysis and genetical 
genomics can reveal links within and between 
metabolic pathways and, finally, how flux 
and mutant-phenotype measurements can be 
used to verify and correct the reconstructed 
biochemical maps.

Gaps in current metabolic-pathway maps
Metabolite networks have been reconstructed 
automatically for a large number of microor-
ganisms5–7. The network reconstructions are 
primarily accomplished using computational 
functional transfer from experimental 
results that have been obtained from a small 
number of model organisms. The presence 
of a particular reaction is inferred if an 
orthologue of the corresponding enzyme is 
encoded in the genome. In cases in which 
genome divergence or the presence of 
non-orthologous enzymes interferes with 

genome annotation, the resulting networks 
will be incomplete. For example, in recently 
reconstructed models of the Geobacter 
sulphurreducens and Methanosarcina barkeri 
metabolomes8,9, many hypothetical reactions 
(comprising approximately 20% of the total 
number of reactions) had to be added to the 
initial metabolic models to enable fulfilment 
of all the basic biochemical requirements. In 
G. sulphurreducens, established pathways for 
the synthesis of lysine, serine, alanine and 
threonine were all missing in the genome 
annotation, even though the bacterium 
can synthesize these amino acids9. Various 
bioinformatic approaches have been pro-
posed to fill in the gaps in those cases in 
which it is known that a particular reaction 
or pathway does exist in a given metabolic 
system10–12. These gap-filling methods take 
into account genomic correlations (such 
as mRNA co-expression, chromosomal 
clustering across genomes and protein 
fusions) between known and missing 
parts of metabolic networks. Metabolic 
gap closing is aggravated by the problem 
of globally orphan metabolic activities. 
Indeed, for 30–40% of the known meta-
bolic activities that are classified by the 
Enzyme Commission (see Further infor-
mation) there are no known sequences in 
any organism — these activities remain 
globally orphan12–14.

Importantly, currently unknown 
metabolic reactions cannot be discovered 
using automatic reconstruction methods. 
However, the complete structure of 
biochemical pathways is well-established 
only for the central metabolism of model 
organisms — indeed, untargeted large-scale 
metabolite screens yield an abundance 
of unknown compounds15. Even in 
Escherichia coli, the quintessential model 
organism, a novel pathway of glucose metab-
olism was discovered in 2003 (ReF. 16) and a 
previously undescribed pathway for pyrimi-
dine catabolism in 2006 (ReF. 17). Those parts 
of the metabolic map that are not required 
to fulfil immediate growth demands tend to 
fall outside the scope of available tools for 
network reconstruction and analysis. They 
generally contribute to performance only 
under specific environmental conditions, 
such as physical or antibiotic stress, and their 
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Abstract | The computational reconstruction and analysis of cellular models of 
microbial metabolism is one of the great success stories of systems biology. The 
extent and quality of metabolic network reconstructions is, however, limited by 
the current state of biochemical knowledge. Can experimental high-throughput 
data be used to improve and expand network reconstructions to include 
unexplored areas of metabolism? Recent advances in experimental technology 
and analytical methods bring this aim an important step closer to realization. Data 
integration will play a particularly important part in exploiting the new 
experimental opportunities.
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absence rarely influences viability under 
standard laboratory conditions. Nonetheless, 
the knowledge of these condition- and 
organism-specific activities is essential for 
a complete understanding of the metabolic 
capacities of microbial species.

Mass spectrometric metabolome mapping
How then can we discover new metabolites 
and biochemical pathways? of fundamental 
importance for large-scale metabolic-network 
reconstruction is a complete inventory of 
cellular metabolites. Although complete 
genomes, transcriptomes and, to a lesser 
extent, proteomes have been described for 
numerous cell types, measurements of cellular 
metabolism have lagged behind owing to 
the variability and chemical complexity of 
low-molecular-weight compounds.

The ability to collect biochemically 
relevant information about metabolites using 
high-throughput techniques has only recently 
become available18. A number of reviews 
that summarize the various metabolomic 
platforms have been published19–21 and a full 
discussion is not warranted here. Mass spec-
trometry has long been the favourite method 
for comprehensive metabolome screening; it 
has the largest scope for metabolite analysis, 
in terms of the universality, sensitivity 
and specificity of the measurements19,22. 
Several mass-spectrometric platforms can 
measure large numbers of metabolites 
simultaneously in any given sample18,23–26. 
ultra-high-accuracy mass analysers27 
achieve molecular-mass resolutions of 
up to 1,000,000 and mass accuracies that 
are better than 1 part per million. The 
first study to use Fourier transform ion 
cyclotron resonance mass spectrometry in 
metabolomics showed that it is possible to 
separate more than 5,000 unique masses 
in ripening strawberry extracts and assign 
single empirical formulae to approximately 
half, based solely on molecular mass27. 
A comparable performance is now avail-
able using the magnet-free (and therefore 
more economical) orbitrap mass analyser, 
which is equally suitable for metabolomics 
experiments23,24. Further advances in sam-
ple preparation that maximize metabolite 
yield, and minimize losses that are due to 
ion suppression and related phenomena, 
will further enhance the usefulness of this 
exceptionally promising approach.

In a metabolomic study of the protozoan 
pathogen Trypanosoma brucei , a high-
accuracy mass-spectrometry approach 
was used to obtain not only accurate mass 
measurements of metabolites, but also 
infer accurate mass differences between 

related metabolites28. As specific mass dif-
ferences imply corresponding biochemical 
transformations, the accurate difference 
information was used to predict the poten-
tial connectivity between all measured mass 
peaks (FIG. 2). In this way, an entire hypo-
thetical metabolic map was reconstructed 
de novo. The follow-up statistical analysis 
showed that the structure of the network 
was far from random and contained more 
meaningful biochemical links than would 
have been expected by chance28.

ultra-high-accuracy mass spectrometers 
also allow the prediction of hypothetical 
structural formulae for unknown com-
pounds by combining their exact molecular 
masses with knowledge about their possi-
ble relationship to other masses in the sam-
ple. For example, although several formulae 
could all have highly similar molecular 
masses, the chemical relationships to other 
compounds in the mixture will indicate 
the most likely true formula. The fact that 
most metabolites contain simple building 

 Box 1 | the power of stoichiometric models of metabolism

A stoichiometric matrix, such as a metabolic-
pathway map, is a method of providing a 
complete description of all the possible cellular 
biochemistries. In a metabolic map, metabolites 
are connected to the reactions (enzymes) that 
interconvert them (see figure for a theoretical 
metabolic map). The stoichiometric matrix (S) 
contains the same information in a 
mathematical form: for example, in the figure, 
the entries show that in reaction (r) 1, one 
molecule each of red and green combine (are 
consumed) to form one molecule of red–green 
product. The network can be reconstructed 
from S , but the opposite is not necessarily 
the case. For example, in r4, two molecules 
of the purple compound are produced for 
every blue molecule that is consumed. Such 
information is not always included in the 
biochemical-pathway map. In steady state, 
the condition Sv=0 needs to be satisfied, in 
which v is the vector that describes the fluxes 
through each reaction of the system. This 
limits the possible combinations of metabolic fluxes that can maintain a steady state. Additional 
constraints can specify that some reactions are irreversible or have certain maximal rates, which 
further restricts the range of allowed metabolic behaviours. 

For a genome-scale metabolic network, the pathway map can contain thousands of metabolites 
and reactions, so leading to a huge matrix that describes a diverse number of possible metabolic 
phenotypes, and can be used to discover global emergent properties that determine cellular 
physiology. A computational analysis of the stoichiometric matrix using flux-balance analysis can 
reveal which genes are essential in different environmental conditions2. This is an important 
emergent property, as the essentiality of a gene depends on its network context, such as the 
availability of alternative pathways or other back-up mechanisms. The accuracy of lethality 
predictions using flux-balance analysis can be as high as 70–80% for well-studied organisms2. 

A flux-balance analysis of the stoichiometric matrix can also be used to predict evolutionary 
responses to gene deletion62,63 and to analyse evolutionary trajectories, if augmented with a few 
basic assumptions, such as ‘microbial cells are optimized to achieve maximal growth rate’. For 
example, by interpreting experimentally observed fluxes based on stoichiometric constraints, Fong 
and colleagues64 observed that rapid evolutionary adaptation in Escherichia coli is initially achieved 
by activating latent alternative pathways and, subsequently, by increasing pathway capacity, but 
rarely by evolving new functionality.

Growth yield and flux through specific pathways are other emergent properties that are 
predicted successfully by analysis of the metabolic network, without requiring quantitative 
information on kinetics or regulation2. Flux predictions are also surprisingly accurate for mutant 
cells62,65, and this forms the basis for new strategies in bioengineering. For example, the Optknock 
approach66 identifies sets of mutations (gene knock outs) that change the metabolic system in such 
a way that high growth rates (the objective of the cell) are biochemically coupled to high fluxes 
through particular reactions, such as secretion of a specific metabolite (the objective of the 
engineer). This approach has been used to engineer bacterial strains that overproduce lactic acid 
for industrial use67. Although the results of the Optknock strategy agree with manually derived 
designs, the advantage of the approach will be realized in the overproduction of new targets.
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blocks facilitates this analysis; Nobeli and 
colleagues29 have shown that as few as 
57 common structural groups (ranging 
from porphyrin and nicotinamide units to 
phenyl and phosphate groups) account for 
as much as 90% of all atoms in the known 
metabolome of E. coli.

Pathway reconstruction from correlation 
Although ultra-high-accuracy mass 
spectrometry can predict potential 
connectivity between masses, this method 
on its own is inadequate to prove that 
metabolites are biochemically connected. 
Metabolic correlation analysis is probably 
the most direct technique that can infer 
biochemical connectivity from high-
throughput measurements of metabolite 
concentrations. It is expected that 
compounds in which concentrations are 
correlated in multiple samples are linked 
by an enzymatic reaction. The feasibility 
of de novo inference of entire reaction 
pathways based on metabolite correlations 
was first demonstrated experimentally by 
Arkin and colleagues30. In this pioneering 
study, the aim was to reconstruct a 
segment of glycolysis (consisting of 8 
purified enzymes and 14 metabolites) 
from actual time-series measurements 
obtained using a continuous-flow stirred-
tank reactor. Correlated responses to 
perturbations linked the metabolites 
in a manner that recreated much of the 
chemical and regulatory connectivity 

that is already known for glycolysis. 
Refinements of this approach, using more 
extensive system perturbations, have so 
far been restricted to small systems under 
optimal experimental conditions31,32.

The application of correlation analysis 
to entire metabolite networks presents 
far greater challenges. This approach was 
demonstrated using Arabidopsis thaliana 
in one of the first large screens of a cellular 
metabolome33. In this analysis, strong 
correlations were indeed observed between 
some metabolites in which biochemical 
connections were already well established 

(such as glucose 6-phosphate and fructose 
6-phosphate). However, numerous non-
adjacent metabolites also showed strong cor-
relations, whereas the majority of metabolic 
neighbours did not correlate at all.

The basis for these observations has been 
examined by several groups34–37. Metabolic 
networks are not merely causal networks; 
they are also biotransformation networks in 
which compounds are physically transformed 
into each other. As a consequence, reactions 
that are not directly connected can still have a 
profound influence on one another. Indirect 
effects and non-observed concentrations, 
which are common in metabolic networks, 
as well as various kinds of time delays that 
are imposed by intermediary reactions and 
compartmentalization, also influence the 
observed correlations38. In terms of classical 
metabolic-control analysis, the correlation 
patterns of metabolite concentrations reflect 
the enzyme control coefficients that are 
involved in their turnover34. In many cases, 
these control coefficients do not reflect direct 
biochemical connectivity in an intuitive way.

In spite of the previously discussed 
caveats, these initial studies demonstrate 
the feasibility of using correlation patterns 
of a set of metabolites to deduce the con-
nectivity between them. Clearly, although 
the correlations can be used as fingerprints 
for network structures, accurate network 
reconstruction — particularly at the global 
cellular level — will require integration with 
additional lines of evidence.

Genetical genomics of metabolism
one recently introduced methodology that 
can enhance correlation-based network 
reconstruction is based on the genetical 

Figure 1 | methods for correcting and expanding the metabolic map. Many methods have been 
developed recently for expanding our knowledge of microbial metabolism on a large scale. 
Bioinformatics can be used to create a reconstructed core model using comparative genomics infor-
mation. Correlation analysis and its modern derivative, which is based on genetical genomics, can be 
used to identify novel metabolic modules and link them to the responsible enzymes. it can also order 
metabolites along reaction pathways. Ultra-high-accuracy mass spectrometry can be used to provide 
the metabolomics data that is required by each of these methods and, additionally, to infer novel 
pathways directly from the observed exact metabolite-mass differences. in combination with flux 
measurements, optimal metabolic network identification (OMNi) can then be used to identify incor-
rect or inactive reactions, both in the bioinformatically predicted core and among the newly 
discovered areas of metabolism.

glossary

De novo pathway reconstruction 
The inference of metabolic pathways directly from 
experimental measurements, without any prior information.

Emergent property 
A property that emerges only in the context of an 
integrated system, not in its components; also called 
systems property.

Flux-balance analysis 
A computational method that is used to obtain feasible 
flux distributions in metabolic networks. Linear constraints 
on nutrient uptake, reaction irreversibility and steady-state 
conservation of metabolite concentrations are applied 
using a stoichiometric model. The fluxes that are optimal for 
a given objective function (for example, biomass production 
or ATP synthesis) are then obtained using linear optimization.

Genetical genomics 
The combination of high-throughput measurements of 
gene expression, protein levels or metabolite 
concentrations with classical genetic strategies.

Metabolomics 
The analysis of the concentration and dynamics of small 
cellular molecules (the metabolome).

Optimal metabolic network identification 
(OMNI). A computational method for correcting 
stoichiometric models based on a small number of 
pathway flux measurements.

Stable-isotope flux analysis 
An analysis that traces the metabolic fate of non-
radioactive atoms from labelled precursors to biomass 
components. The steady-state labelling pattern can be 
used to infer the activity of metabolic pathways (fluxes) 
with the help of stoichiometric models.

Stoichiometric model 
A detailed description of metabolism without information 
on the kinetic or thermodynamic parameters. The model 
specifies how many molecules of each substrate are 
used and how many product molecules are generated 
(the reaction stoichiometry) for every reaction.
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genomics approach39–41. In genetical 
genomics, segregating populations (for 
example, recombinant inbred lines) are cre-
ated by crossing two divergent parental lines 
(FIG. 3). As each offspring line is a 50:50 ratio 
mosaic of the parental genotypes, genetical 
genomics is a multiple perturbation approach. 
In several eukaryotic species, including yeast, 
the approach has been used successfully in 
transcriptomic studies42. For prokaryotic 
microorganisms, genetical genomics experi-
ments can also be performed by exploiting 
the natural variation that is present in a bacte-
rial population rather than using controlled 
genetic crosses. For human gene expression, 
such a population-based genetical-genomics 
approach has already been tested43.

The approach can also be used in 
metabolomics. In a pilot study, Keurentjes 
and colleagues40 crossed two A. thaliana 
accessions that had different metabolite 
profiles and then screened and compared 
the metabolomes of the resulting offspring 
lines. large groups of metabolites were 
linked to shared genetic loci. In several 
cases in which the identity of the metabo-
lites was determined, these shared loci 
were also shown to harbour key enzymes 
from the corresponding pathway. In a fur-
ther step, the authors recovered a fraction 
of the biochemical connectivity within the 
glucosinolate biosynthesis pathway based 
purely on the population-wide correlation 
patterns.

The study by Keurentjes and colleagues40 
demonstrates that genetical genomics can be 
used to assign observed metabolites to local 
functional modules. using larger population 
sample sizes will permit more in-depth analy-
ses of the connectivity between metabolites 
based on genetical genomics and allow robust 
separation of correlated genetic variation 
from intrinsic fluctuations within the system.

Flux measurements and phenotypes 
Although metabolomics and genetical 
genomics provide an inventory of metabolites 
and suggest possible chemical relationships 
between them, dynamic information from 
flux analysis can be used to further refine the 
stoichiometric reaction models. Metabolic 
fluxes are measured by adding stable-isotopic 
tracers to microbial growth medium and 
observing their flow through the metabolic 
network44,45. Technologies that enable stable-
isotope flux analysis at high throughput have 
recently become available44.

Recent work by Herrgard and colleagues46 
suggests an experimental method for both 
validating and correcting metabolic models 
based on experimentally measured fluxes. 
Their approach (optimal metabolic network 
identification) uses a two-level optimization 
procedure to find modifications in existing 
models that both minimize the discrepancy 
between predicted and observed fluxes 
and maximize metabolic performance (for 
example, biomass production), which is 
assumed to be optimized by evolution in most 
microbial species.

In addition to validation by experimentally 
measured fluxes, cellular metabolic models 
are now routinely checked against available 
high-throughput functional-genomics 
data, such as growth phenotypes in various 
environmental conditions47. The flux-balance 
metabolic models are used to predict mutant-
growth phenotypes and wrong predictions 
guide the iterative model improvement48–51. 
Initially, adjustments to metabolic models 
that were based on inconsistencies between 
experimental and predicted mutant pheno-
types were made manually. Recently, however, 
several approaches have been developed 
to correct the models in an automatic or 
semi-automatic fashion. For example, Reed 
and colleagues52 used an optimization-based 
approach to predict missing reactions and 
improve agreement between experiments 
and model predictions. Several of their pre-
dictions were verified experimentally. Kumar 
and colleagues53 subsequently suggested an 
algorithm to identify metabolites in recon-
structed networks that cannot be produced 
under any conditions. using a database of 

Figure 2 | Network reconstruction using ultra-high-accuracy mass spectrometry. if metabolite 
masses in a cellular sample are measured comprehensively and with high accuracy, the difference 
between masses can be used to identify compounds that are related by common metabolic transfor-
mations. This information can be used to infer a putative metabolic network. The reconstruction will 
contain spurious edges, for example, the red and blue metabolites are not directly connected by an 
enzymatic transformation in the real network (top). such reactions can be pruned from the reconstruc-
tion using measured C13 stable-isotope-flux measurements in combination with optimal metabolic 
network identification analysis, or by correlation measurements. Genetical genomics experiments can 
lead to further refinement and help to link the inferred reactions to the catalysing enzymes. r, reaction.
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known metabolic activities, these workers 
then identified a minimal number of addi-
tional (missing) reactions that were required 
to restore the connectivity of all metabolites 
in the network.

Several recent studies extended the con-
straint-based approach to metabolomics data. 
Notably, Kümmel and colleagues54 introduced 
network-embedded thermodynamic (NET) 
analysis to allow the network-level interpreta-
tion of metabolomics data. This approach 
uses known reaction directionalities and 
metabolite-formation energies to calculate 
possible concentration ranges of metabolites. 
NET analysis was successfully used to resolve 
the concentrations of several pooled metabo-
lites and check the internal consistency of 
available metabolomics datasets for E. coli54.

the future of metabolic reconstruction 
In this Innovation, we have outlined a 
number of new technologies that enable 
the identification of novel metabolites 
and their connections within microbial 
metabolic networks. These approaches 
will be particularly useful for an intensified 
exploration of the peripheral and less-studied 
areas of metabolism. A number of studies 
highlight the importance of peripheral 
metabolism for microbial diversification and 
physiology. Peripheral metabolites are the 
most evolutionarily volatile, being rapidly lost 
and gained during evolution55. A large-scale 
study of horizontal gene transfer in bacteria 
revealed that recently transferred genes are 
predominantly active at the periphery of the 
metabolic map and confer specific advantages 
in changing environments56. The so-called 
‘bow tie’ architecture of metabolism57 
emphasizes the functional role of peripheral 
metabolism: a large number of substrates 
converge towards a restricted small-core 
metabolism, from which they fan out again 
into a multitude of synthesized cellular 
products. Perhaps of even greater importance 
is the fact that most attempts to manipulate 
microbial metabolism in order to produce 
compounds of biotechnological value are 
focused on these peripheral pathways58,59.

Integrated approaches are required to fully 
exploit the potential of the new experimental 
technologies that are described above. There 
is no single experimental technology that will 
be able to reliably discover metabolic networks 
on a high-throughput scale. In combination, 
however, the described approaches offer 
unprecedented power to reconstruct meta-
bolic networks. For example, a computational 
sequence analysis of a target genome can 
chart an initial metabolic map of an organ-
ism. Experiments using ultra-high-accuracy 

mass spectrometry can then provide precise 
molecular identification and de novo pathway 
reconstruction. Metabolites that correlate 
across multiple experimental conditions and 
are linked by a predicted chemical transfor-
mation can be connected into pathways with 
a high degree of confidence. If the predicted 
network is also supported by metabolic 
flux measurements and predicted mutant 
phenotypes, under multiple environmental 
conditions, the reliability of the metabolic 
map becomes almost certain. The drive 
towards data synthesis is not unique to meta-
bolic network reconstructions; integrative 
methods are now widely used in the context 
of protein–protein interaction and regulatory 
networks60,61. Methods developed in that 
context facilitate the weighted integration 

of various experimental- and genomic-data 
sources to predict molecular interactions.

In contrast to the labour-intensive 
and time-consuming experimentation on 
individual metabolites and enzymes that 
has been used previously, the experimental 
tools and analytical methods that are 
presented here will enable automatic or 
semi-automatic reconstructions of novel 
metabolic pathways with unprecedented 
speed and accuracy. Although much of 
the work in this young and promising area 
of research has been limited to successful 
proof-of-principle studies, larger studies are 
already underway in numerous laboratories. 
Such experiments will help us to elucidate 
new areas of metabolism for all sequenced 
and yet-to-be-sequenced organisms.

Figure 3 | metabolite module identification using genetical genomics. Two inbred strains with 
different metabolic capacities are crossed. The heterozygous F1 generation is propagated by selfing or 
brother–sister mating to generate recombinant inbred lines that are homozygous mosaics of the paren-
tal strains. The metabolite profile for each strain is measured, for example, by chromatography and mass 
spectrometry. The genetic loci that control the metabolite concentrations are mapped using techniques 
that were developed for quantitative trait locus (QTL) mapping. The correlation between these genetic 
maps can be used to create a metabolite network, in which genes that share common control loci are 
connected. each control locus (L1–4) corresponds to a putative metabolic module (M1–4).
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