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A significant fraction (30-40%) of known metabolic
activities is currently orphan. Although orphan activities
have been biochemically characterized, we do not know
a single gene responsible for these reactions in any
organism. The problem of orphan activities represents
one of the major challenges of modern biochemistry. We
analyze the distribution of orphans across biochemical
space, through years of enzymatic characterization, and
by biological organisms. We find that orphan metabolic
activities have been accumulating for many decades.
They are widely distributed across enzymatic functional
space and metabolic network neighborhoods. Although
orphans are relatively more abundant in less studied
species, over half of orphan reactions have been exper-
imentally characterized in more than one organism.
Shrinking the space of orphan activities will likely
require a close collaboration between computational
and experimental laboratories.

Introduction

Rapid technological progress, spurred by genomic
technologies, has revolutionized biological research [1,2].
The race to obtain complete functional datasets for various
model organisms is under way [3]. The best known example
is the exponential growth of complete genomic sequences
(http://www.genomesonline.org/). There are multiple ongo-
ing efforts to accumulate other ’omics datasets: transcrip-
tome collections [4,5], collections of regulatory elements
[6,7], cellular proteomics [8,9] and metabolomics data
[10]. These resources will ultimately allow us to place genes
and functions in context with their appropriate cellular
networks [11-13].

The collection of all biochemical reactions catalyzed in
nature represents one of the oldest and most fundamental
pieces of biological knowledge. Over the last century,
biochemical studies have identified several thousand
enzymatic reactions catalyzed in various species. The
International Congress of Biochemistry set up the Enzyme
Commission (http:/www.chem.qmul.ac.uk/iubmb/enzyme/)
in 1955 to classify biochemical reactions. More than 4,000
known enzymatic activities are currently assigned unique
identification numbers (EC numbers) by the Commission.
Usually, only enzymes characterized in a published manu-
script are assigned EC numbers. The EC numbers are
organized hierarchically using a four-digit code: the first

Corresponding author: Vitkup, D. (dv2121@columbia.edu).
Available online 18 June 2007.

digit indicates the general class of the -catalyzed
reactions (oxidoreductases, transferases, hydrolases,
lyases, isomerases or ligases), the second usually specifies
the type of the chemical bond the reaction acts on (for
example, peptide bonds), the third specifies the general type
of the reaction substrates (for example, polypeptides), and
the fourth is a serial number that generally indicates the
substrate specificity.

Paradoxically, as pointed out by Karp [14] and other
researchers [15-19], for a significant fraction of the
characterized metabolic activities no representative genes
have been identified across all organisms. Such activities
have been called ‘orphan’ to emphasize that they are not
currently assigned to any gene. It is necessary to differ-
entiate between global and local orphan metabolic activi-
ties. Global orphans represent activities without a single
representative gene in any organism. By contrast, the
term local orphan refers to a known activity without an
assigned gene in a particular organism, while genes for the
activity are known in other species. Global orphans are the
main topic of this article and here we refer to them simply
as orphans.

By analyzing available sequence and enzyme databases
we have identified a total of 1360 orphan metabolic activi-
ties". This constitutes ~34% of the 4003 active EC numbers
in the ENZYME database (an electronic version of the
EC classification, release of 12 December 2006, http://ca.
expasy.org/enzyme/) [20]. No representative sequences for
the orphan activities were found in the current releases of
SWISSPROT (version 51.3), TrEMBL (version 34.3) [21],
PIR (version 80.00) [22], or MetaCyc (version 10.5) [23].
Many of the identified orphan activities were characterized
long ago. For example, Sacks et al. [24] first reported in
1951 that an enzyme mixture from corn kernels catalyzed
the conversion of maleate to D-malate. The responsible
enzyme — maleate hydratase (EC 4.2.1.31) — was then
purified from rabbit kidneys [25] and from Pseudomonas
pseudoalcaligenes [26]. In 1992, van der Werf et al. [27]
screened >300 microbes for production of D-malate from
maleate and found that 128 of the tested bacteria are
capable of the conversion. Despite the wide distribution
among organisms including bacteria, plants and mammals,
the activity remains orphan. Another example is the nico-
tinamide-nucleotide (NMN) amidase (EC 3.5.1.42), which is
involved in the pyridine nucleotide cycle and converts NMN

" Supplementary materials are available at http:/vitkuplab.cu-genome.org/html/
global_orphan/global_orphan_ec_2007.
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to nicotinic acid mononucleotide (NaMN). This activity was
first described in Azotobacter vinelandii [28]. The
biochemical evidence for this enzyme was later found in
Salmonella typhimurium [29], and in 1981, the enzyme was
purified from Escherichia coli [30]. Nevertheless, currently
there is no known gene for the activity in metabolic
databases.

The two examples above illustrate the presence of
known orphan activities in sequenced organisms. The
genes responsible for the orphan activities are among
the sequenced open reading frames. The problem is that
the activities and the responsible genes are not matched to
each other: the genes are likely to be marked as hypothe-
ticals and the activities as orphan.

Historical accumulation of orphan activities

To understand the historical accumulation of all and
orphan activities we calculated the number of enzymes
characterized every year using the earliest publication
reference for each biochemical activity on the Enzyme
Commission website (http:/www.chem.qmul.ac.uk/iubmb/
enzyme/) (Figure 1a). Only activities reported before the
year 2000 were included in the analysis as a significant
number of recently characterized activities have yet to be
classified. Interestingly, the discovery rate of new enzymes
decreased in the 1970s and 1990s. These decreases might
be related to shifting trends in funding and research
directions, such as genomics in the 1990s. Alternatively,
the decreases might be related to changes in the criteria
used to define new activities.

For comparison, we also calculated the fractions of all
activities characterized in different years which still
remain orphan (Figure 1b). Generally, activities charac-
terized in earlier years are less likely to remain orphan. In
the 1990s, the fraction of newly characterized orphan
activities decreased as sequencing technologies improved
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and it became difficult to publish a manuscript without
reporting the sequenced gene for a new activity.

Distribution of orphan activities across the
biochemical space

What is the distribution of orphan activities across the
enzymatic functional space? One possibility is that orphan
activities are primarily clustered in less studied regions of
the EC classification space. However, our results demon-
strate that thisis unlikely to be the case (Figure 2). Figure 2a
presents the fractions of orphan activities at different levels
of the EC classification organized in a tree hierarchy. For
example, at the top level of the EC hierarchy, we find that
403 (36.5%) of oxidoreductases, 436 (37.6%) of transferases,
326 (29.8%) of hydrolases, 116 (33.0%) of lyases, 51 (32.0%) of
isomerases, and 28 (20.5%) of ligases are orphan. Similar
patterns are also observed at other levels of the EC hier-
archy. The number of orphan activities in a given enzymatic
class is proportional (Pearson’s R = 0.93, P < 0.0001) to the
total number of metabolic activities in the class (Figure 2b),
whereas the fraction of orphan activities is not correlated
(R =0.098, P=0.4) with the class size (Figure 2b, inset).
Consequently, metabolic activities in large metabolic
classes are, on average, as likely to be orphan as activities
in smaller classes.

In many cases, enzymes neighboring each other in
metabolic networks catalyze different types of biochemical
reactions (i.e. they are not similar in terms of the EC
classification). Consequently, the distribution of orphans
in the context of metabolic networks is different from their
distribution across the EC space. We asked whether activi-
ties neighboring orphans in metabolic networks are more
likely to be orphans themselves. Following the previously
described approach [31,32], we defined network neigh-
bors as activities (reactions) that share the metabolites
either as substrates or products. All metabolic reactions
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Figure 1. Experimental characterization of biochemical activities over the years. Only data before the year 2000 are shown owing to the lag in classification of recently
characterized EC numbers. (a) The total number of unique biochemical activities (EC numbers) characterized each year (1950-2000). (b) The fractions of activities
characterized in different years which still remain orphan. Activities characterized in earlier years are more likely to be assigned genes. The fractions of orphans decreased

after the mid-1980s (probably owing to developments in sequencing technologies).
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Figure 2. Distribution of orphan activities across the EC classification. (a) The EC classification is organized in a tree hierarchy and the fractions of orphans for each class and
sub-class are shown on the tree branches. (b) The correlation (Pearson’s R =0.93) between the numbers of all and orphan activities in different subclasses of the EC
hierarchy. Inset shows the fraction of orphan activities versus the size of the subclass. EC numbers in large enzymatic classes are, on average, as likely to be orphan as EC
numbers in smaller classes.
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described in the ENZYME database [20] were used to build
a metabolic network in which network nodes represent
metabolic activities (orphan or non-orphan EC numbers)
and edges represent connections between the activities
established by shared metabolites. Common metabolites
such as water or ammonia are not likely to represent
functional linkages. Therefore, the 15 most frequent meta-
bolites — ATP, ADP, AMP, CO,, CoA, glutamate, H, NAD,
NADH, NADP, NADPH, NH;3;, GLC, orthophosphate and
pyrophosphate — were removed before the network was
reconstructed. Our results are not sensitive to the exact
number of removed metabolites. The analysis of the con-
structed metabolic network demonstrates only a marginal
difference in the neighborhood composition between
orphan and non-orphan activities. For example, 32% of
the network neighbors of orphan activities are orphans
themselves, compared with 29% for neighbors of non-
orphan activities.

Organism distribution of orphan activities

How are orphan activities distributed across organisms?
To answer this question, we used information available in
the BRENDA database [33]. The database references
species in which orphan and non-orphan activities were
experimentally characterized. Sequence homology to other
genes responsible for a non-orphan activity can be used to
search for an orthologous gene in a target organism. Such
analysis might be followed by genetic or biochemical exper-
iments on the ‘suspect’ gene to validate the presence of the
activity. By contrast, experimental characterization of
orphan activities in a target organism cannot rely on a
similar set of candidate genes and is significantly more
difficult. Consequently, the information available in the
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BRENDA database will significantly underestimate the
true extent of orphan distribution across species in com-
parison with non-orphan activities. Nevertheless, we found
that each orphan activity is, on average, experimentally
characterized in more than three organisms (median of
the distribution is 2), compared with ~12 organisms
(median = 8) for a non-orphan activity.

The number of orphan activities experimentally
characterized in an organism correlates well with the total
number of activities characterized in that organism (Spear-
man’s R=0.69, P < 0.001; Figure 3). Organisms with a
smaller number of experimentally characterized activities
usually have a higher fraction of orphans (Spearman’s
R =-0.86, P < 0.001; Figure 3, inset). This suggests that
orphan activities are relatively more abundant in less stu-
died species. However, as the total number of experimen-
tally characterized activities increases, the fraction of
orphans remains at around 10-15% independently of the
network size (Figure 3, inset).

We investigated the original source organisms for
known orphan activities using the earliest publication
about each activity referenced in the BRENDA database.
The fractions of orphan and non-orphan metabolic activi-
ties described first in different organisms are shown in
Figure 4. For both non-orphan and orphan activities there
is a wide distribution of source organisms. The largest
fraction of non-orphan activities has been described in
E. coli (historically, the main biochemical model organism).
By contrast, the mammalian species Homo sapiens and
Rattus norvegicus are currently the largest sources of
orphan activities. Orphan activities are less likely to be
described in several well-studied organisms (see also
Figure 3, inset) compared with non-orphan activities.
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Figure 3. Distribution of orphan activities across organisms. The number of experimentally characterized orphan activities is correlated to the total number of distinct
activities in the organisms (Spearman’s R = 0.69). Inset shows the fraction of orphans as a function of the total number of distinct, experimentally characterized activities.
The fraction of orphans in an organism remains around 10-15% as the number of all experimentally characterized activities increases.
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Figure 4. Original source organisms for (a) non-orphan and (b) orphan metabolic activities. The percentages reflect the fractions of known non-orphan (a) and orphan (b)
activities first described in various organisms. Orphan activities are relatively less likely to be characterized in well-studied organisms compared with non-orphan activities.

For example, 47% of non-orphan activities were first
described in the top 10 source organisms, compared with
37% for orphan activities (Figure 4a,b).

Concluding remarks

One important caveat of our analysis is the incompleteness
of the EC classification. Many known, biochemically
characterized, enzymatic reactions have yet to be assigned
EC numbers [14]. The addition of these, currently unclas-
sified, reactions is likely to increase significantly the frac-
tion of orphan activities. For example, we identified 1289
reactions in the KEGG [34] database and 1439 reactions in
the MetaCyc database [35] with no or incomplete EC
classification. About 60—75% of these reactions are orphan.
Therefore, it is likely that up to 50% of all known bio-
chemical reactions are currently orphan.

One possible cause for orphan activities is an incomplete
annotation of the known enzymes in existing databases. For
example, an activity identified as orphan might have been
already assigned a gene under a rarely used name. To
explore this further, we identified official names and syno-
nyms for all orphan activities and searched them against the
UNIPROT database [21] using string matching. In agree-
ment with the previous study [14] we found that only a small
fraction (~5%) of the orphan activities could be assigned
representative genes using this approach. Another possible
source of orphan activities might be spurious reactions. For
example, an incorrect interpretation of experimental results
could lead researchers to postulate a biochemical activity
that does not really exist. Although careful consideration
of associated experimental evidence will be required to
identify such spurious activities, the observation that a
significant fraction of orphans have been experimentally
characterized in several organisms makes it unlikely that
they are dominated by spurious reactions.

Based on the discussion above, it is likely that a majority
of identified metabolic orphans represent real enzymatic
activities missing associated genes. Some of the responsible
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genes are likely to be annotated as hypotheticals or incor-
rectly assigned a different function. We also envision that
some known enzymes could ‘moonlight’ [36] and catalyze
orphan activities in addition to their established functions.

In our view, the scale of the orphan activities problem
makes it one of the major challenges of modern biochem-
istry. The orphan problem should be addressed by a
combined computational-experimental effort. Several com-
putational and experimental approaches can help to accel-
erate the identification of genes for metabolic orphans.
Although homology-based computational methods [37—40]
will not be accurate without reference sequence information,
genomic context correlations such as protein fusion events
[41], gene neighborhood [42], phylogenetic profiles [43] and
mRNA co-expression data [44], can be used to suggest likely
candidates [45,46]. These methods can be combined with the
partially known structure of metabolic networks to signifi-
cantly improve the prediction accuracy [16,31,47-49]. The
likely candidates identified by computational approaches
could then be tested in a high-throughput fashion using
phenotype profiling in multiple environmental conditions
[50] and parallel metabolomics [10] and fluxomics [51]
measurements. Such a combined computational-exper-
imental strategy will help to shrink efficiently the space
of orphan activities.
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