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Abstract Functional conservation is known to constrain protein evolution. Nevertheless, the

long-term divergence patterns of proteins maintaining the same molecular function and the

possible limits of this divergence have not been explored in detail. We investigate these

fundamental questions by characterizing the divergence between ancient protein orthologs with

conserved molecular function. Our results demonstrate that the decline of sequence and structural

similarities between such orthologs significantly slows down after ~1–2 billion years of independent

evolution. As a result, the sequence and structural similarities between ancient orthologs have not

substantially decreased for the past billion years. The effective divergence limit (>25% sequence

identity) is not primarily due to protein sites universally conserved in all linages. Instead, less than

four amino acid types are accepted, on average, per site across orthologous protein sequences.

Our analysis also reveals different divergence patterns for protein sites with experimentally

determined small and large fitness effects of mutations.

Editorial note: This article has been through an editorial process in which the authors decide how

to respond to the issues raised during peer review. The Reviewing Editor’s assessment is that all

the issues have been addressed (see decision letter).

DOI: https://doi.org/10.7554/eLife.39705.001

Introduction
As proteins evolve from a common ancestor, their sequences and structures diverge from each other

(Chothia and Lesk, 1986; Povolotskaya and Kondrashov, 2010). Multiple previous studies have

investigated the relationship between the conservation of protein molecular function, sequence

identity (Lee et al., 2007; Tian and Skolnick, 2003; Worth et al., 2009) and structural similarity

(Chothia and Lesk, 1986; Wilson et al., 2000). For example, the likelihood that two proteins share

the same molecular function, given their sequence (Tian and Skolnick, 2003) or structural

(Wilson et al., 2000) similarity, has been used to investigate the emergence of new protein functions

(Rost, 2002; Conant and Wolfe, 2008), and to perform functional annotations of protein sequences

(Lee et al., 2007; Wilson et al., 2000). In this work, we focused on a different and currently unad-

dressed set of questions. Namely, how far can two sequences diverge while continuously maintaining

the same molecular function? What are the temporal patterns of this divergence across billions of

years of evolution? And how different protein sites contribute to the long-term divergence between

orthologs with the same molecular function? We note that the requirement for the continuous con-

servation of molecular function is crucial in this context, as multiple examples of convergent evolu-

tion and protein engineering demonstrate that the same molecular function, such as catalysis of a
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specific chemical reaction, can in principle be accomplished by proteins with unrelated sequences

and even different folds (Bork et al., 1993; Galperin et al., 1998; Omelchenko et al., 2010).

It was previously demonstrated that proteins with the same structural fold frequently diverge to

very low (~10%) levels of sequence identity (Rost, 1997). These results suggest that conservation of

protein fold, that is, the overall arrangement and topological connections of protein secondary struc-

tures (Murzin et al., 1995), exerts relatively minor constraints on how far protein sequences can

diverge. In contrast to protein folds, it is possible that conservation of specific molecular functions

will significantly limit the long-term divergence of protein orthologs. While only a relatively small

fraction of protein residues (~3–5%) are usually directly involved in catalysis (Lehninger et al., 2013),

recent analyses have demonstrated that even sites located far from catalytic residues may be signifi-

cantly constrained in evolution. Because substitutions at these sites can have substantial effects on

molecular function (Firnberg et al., 2016), it is likely that functionally-related sequence constraints

extend far beyond catalytic residues.

In this study, we explored the long-term divergence patterns of protein orthologs by characteriz-

ing their pairwise sequence and structural similarity as a function of their divergence time. We used

several models of molecular evolution to calculate the divergence rates, defined as the decrease in

pairwise sequence identity or structural similarity per unit time, between orthologous proteins with

the same molecular function. We also characterized the long-term divergence patterns at protein

sites with different levels of evolutionary conservation, different locations in protein structures, and

different experimentally measured fitness effects of amino acid substitutions. Finally, we explored

how the limits of sequence and structural divergence after billions of years of evolution depend on

the degree of functional conservation between orthologs.

Results
To study the evolution of proteins with the same molecular function, we initially focused our analysis

on enzymes because their molecular function is usually well defined. The Enzyme Commission (EC)

classifies enzymatic functions using a hierarchical 4-digit code (Bairoch, 1999), such that two

enzymes that share all four EC digits catalyze the same biochemical reaction. We used protein

sequences representing 64 EC numbers from 22 diverse model organisms across the three domains

of life (Supplementary file 1). The considered activities include members of all six major enzyme

classes: oxidoreductases, transferases, hydrolases, lyases, isomerases and ligases.

To investigate whether the conservation of enzymatic function limits the divergence between

orthologous sequences, we first calculated global pairwise sequence identities between orthologs as

a function of their divergence times (Figure 1, Figure 1—figure supplement 1). The pairwise diver-

gence times reported in the literature (Hedges et al., 2006) between the considered 22 species

(Supplementary file 1) were used as a proxy for the divergence times between corresponding

orthologous proteins. For each enzymatic activity, we constructed phylogenetic trees based on the

orthologous protein sequences and compared them to the corresponding species’ trees. Protein

sequences with clear differences to the species’phylogenetic tree topologies, suggesting cases of

horizontal gene transfer, were excluded from the analysis (see Materials and methods).

We next considered two simple models of long-term protein evolution, one without a long-

term limit of sequence divergence and the other with an explicit divergence limit. The first model

corresponds to sequence divergence with equal and independent amino acid substitution rates

across all proteins sites (Dickerson, 1971; Zuckerkandl and Pauling, 1965); see Equation 1, where

y represents global sequence identity, t represents divergence time, and R0 represents the average

substitution rate (Dickerson, 1971). In this model, back substitutions are not allowed, and sequence

divergence slows down with time simply due to multiple substitutions at the same protein sites and

progressively fewer non-mutated sites. The second model corresponds to sequence divergence

where, in addition to sites with equal and independent substitution rates, there is a minimal fraction

of identical sites at long divergence times; the fraction of identical sites is represented by Y0 in

Equation 2.

y¼ 100 � e�R0�t (1)

y¼ Y0 þ 100�Y0ð Þ � e�R0�t (2)
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Figure 1. Sequence divergence of enzyme orthologs as a function of time. The global pairwise sequence identities between pairs of orthologous

enzymes are shown as a function of divergence times between the corresponding species. Three models of amino acid substitution were used to fit the

divergence data. Model 1 (black lines) assumes independent and equal substitution rates across all protein sites. Model 2 (red lines) assumes, in

addition to independent and equal substitution rates, that a given fraction of protein sites remains identical at large divergence distances. Model 3

(blue lines) assumes a gamma distribution of amino acid substitution rates across sites. Best fits of the models are shown for four representative EC

numbers: (a) 1.5.1.3, (b) 2.7.4.3, (c) 4.2.1.2, (d) 6.3.4.2. The horizontal dashed black lines represent the average sequence identity for the global

alignment of unrelated protein sequences. The data and corresponding model fits for the other EC numbers considered in the analysis are given in

Figure 1—figure supplement 1 and Supplementary file 2a.

DOI: https://doi.org/10.7554/eLife.39705.002

The following source data and figure supplements are available for figure 1:

Figure supplement 1. Sequence divergence of enzyme orthologs as a function of time.

DOI: https://doi.org/10.7554/eLife.39705.003

Figure supplement 1—source data 1. Sequence identity versus divergence times for 64 enzyme families.

DOI: https://doi.org/10.7554/eLife.39705.004

Figure supplement 2. Projected long-term sequence identity of metabolic orthologs.

DOI: https://doi.org/10.7554/eLife.39705.005

Figure supplement 3. Divergence of orthologs with experimentally validated functional annotations.

DOI: https://doi.org/10.7554/eLife.39705.006

Figure supplement 3—source data 1. Sequence identity versus divergence times for experimentally validated enzymes.

DOI: https://doi.org/10.7554/eLife.39705.007

Figure supplement 4. Enzyme divergence rates at 30% sequence identity.

DOI: https://doi.org/10.7554/eLife.39705.008

Figure supplement 5. Sequence divergence of non-enzyme orthologs as a function of divergence time.

DOI: https://doi.org/10.7554/eLife.39705.009

Figure supplement 5— source data 1. Sequence identity versus divergence times for 29 non-enzyme families.

DOI: https://doi.org/10.7554/eLife.39705.010

Figure supplement 6. Sequence divergence of mitochondrial ribosomal orthologs as a function of divergence time.

DOI: https://doi.org/10.7554/eLife.39705.011

Figure 1 continued on next page
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We applied the two models to fit the sequence divergence for each of the considered enzymatic

functions. The best model fits for four representative metabolic activities are shown in Figure 1

(black for the first model and red for the second); the fits for the remaining metabolic activities are

shown in Figure 1—figure supplement 1. In 62 of the 64 cases, the second model fits the diver-

gence data significantly better than the first model (F-test p-value<0.05, Supplementary file 2a).

Moreover, in 95% of the cases (61/64) the maximum likelihood value of the parameter Y0 is signifi-

cantly higher (Wald test p-value<0.05) than the average sequence identity between random protein

sequences based on their optimal global alignment (~13.5%, shown in Figure 1 and Figure 1—fig-

ure supplement 1 by dashed black lines). The distribution of the fitted parameter Y0 suggests a

long-term sequence identity >25% (with average ~40%) between considered orthologs (Figure 2a);

this demonstrates that conservation of a specific enzymatic function significantly limits long-term

protein sequence divergence. Notably, model two is mathematically equivalent (see

Materials and methods) to a divergence model with equal substitution rates across sites, a limited

number of amino acid types accepted per site, and allowed back substitutions (Tajima and Nei,

1984; Gilson et al., 2017; Yang, 2006). In this model, the parameter Y0 represents the inverse of

the effective number of acceptable amino acid types per site during protein evolution. Our results

thus suggest that, on average, only 2 to 4 amino acids are acceptable per site for proteins that

strictly conserve their molecular function (Figure 2a, top blue X axis); we note that this low average

number does not contradict the fact that more than four amino acid types could be observed at a

given protein site at low frequencies (Breen et al., 2012).

The two aforementioned models simplify the process of sequence divergence by considering the

same substitution rates across protein sites. A more realistic and commonly used model of protein

evolution assumes a gamma distribution (Yang et al., 2000) of substitution rates across

protein sites; see Equation 3; (Ota and Nei, 1994), where a represents the shape parameter of the

gamma distribution. The best fits of such a variable-rate model (blue in Figure 1 and Figure 1—fig-

ure supplement 1) showed that the rates of protein sequence divergence between orthologous

Figure 1 continued

Figure supplement 6—source data 1. Sequence identity versus divergence times for mitochondrial ribosomal orthologs.

DOI: https://doi.org/10.7554/eLife.39705.012

Figure supplement 7. Effect of uncertainty in the estimation of species divergence times on the model fits.

DOI: https://doi.org/10.7554/eLife.39705.013
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Figure 2. The limit of long-term protein sequence divergence between orthologous proteins. (a) The distribution of Y0 parameter values across 64 EC

numbers for fits based on Model 2 (Equation 2). The Y0 parameter represents the minimum percentage of protein sites that remain identical at long

divergence times. The parameter Y0 (considered as a fraction) can also be interpreted as the inverse of the average number of amino acid types

accepted per protein site during long-term protein evolution (top blue X axis). (b) Similar to panel a, but for 29 ancient protein families annotated with

non-enzymatic functions. In panels a and b, the vertical red dashed lines represent the median values of the distributions (39% and 30%, respectively).

DOI: https://doi.org/10.7554/eLife.39705.014
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enzymes have decreased by more than 10 times during ~4 billion years of evolution (see

Materials and methods and Supplementary file 2b). Although the third model does not explicitly

consider a long-term divergence limit, the obtained model fits also show that the vast majority of

orthologous enzymes with the same function will remain above 25% sequence identity on the time-

scales when Earth environments will be hospitable to life (1–3 billion years from the

present O’Malley-James et al., 2014) (Figure 1—figure supplement 2).

y¼ 100 �
R0 � t

a
þ 1

� ��a

(3)

The observed divergence limit is not an artifact due to difficulty detecting remote protein homo-

logs, as it occurs at relatively high sequence identities (Figure 1 and Figure 1—figure supplement

1), for which corresponding orthologs can be easily identified by computational sequence compari-

son methods. Furthermore, the results remained similar when we restricted the analysis to ortholo-

gous enzyme pairs with experimentally validated molecular functions (Figure 1—figure supplement

3), based on publications referenced in the BRENDA database (Chang et al., 2015). The results also

remain robust towards the variance in the estimates of divergence times between considered spe-

cies (see Materials and methods). We note that the divergence limit between orthologs with the

same molecular function does not imply that the rates of molecular substitutions decrease in evolu-

tion. It is also not simply due to the curvilinear relationship between time and sequence identity

caused by multiple mutations at the same sites; specifically, the observed decrease in divergence

rates is substantially higher (by >10 fold) than the one expected in model one simply due to multiple

substitutions at the same protein sites. Instead, the effective limit is reached when, due to a small

number of amino acids types accepted per protein site and back substitutions, additional amino acid

replacements do not lead to a substantial further increase in protein sequence and structural

divergence (Meyer et al., 1986).

Interestingly, following the previously introduced metaphor of the expanding protein

universe (Povolotskaya and Kondrashov, 2010; Dokholyan et al., 2002), we can use the third

model (Equation 3) to express the divergence rate between orthologs as a function of protein dis-

tance (D = 1 – y, where y is the fractional sequence identity ranging from 0 to 1), see Equation 4.

This equation, similarly to Hubble’s law of universe expansion (Hubble, 1929), describes how the

divergence rate depends on the distance between protein orthologs. In contrast to the real universe,

the expansion rate of the protein universe significantly decreases with divergence time and

with distance between protein orthologs. For example, the divergence rate between

protein orthologs drops, on average, to only ~2% sequene identity decrease per billion years when

their mutual sequence identity reaches 30% (corresponding to protein distance of 70%; Figure 1—

figure supplement 4).

qD

qt
¼ R0 � 1�Dð Þ

aþ1ð Þ
a (4)

The analyses described above focused on the divergence of enzymes with the same molecular

function. In order to investigate whether the observed divergence patterns are not specific to

enzymes, we repeated the analysis using non-enzymatic ancient orthologs (Figure 1—figure supple-

ment 5, Supplementary file 2c). The set of analyzed 29 protein families included ribosomal pro-

teins, heat shock proteins, membrane transporters, and electron transfer flavoproteins

(Supplementary file 2d). Based on the same set of 22 species used in the analysis of enzyme

families, we found that model two fitted the data significantly better than model one, and that the

parameter Y0 was >25% for the majority (23/29) of the non-enzymatic protein families (Figure 2b,

Supplementary file 2c). Interestingly, we also identified 19 additional orthologous groups showing

two clearly different divergence patterns (Figure 1—figure supplement 6), with pairs of eukaryotic

orthologs diverging substantially faster and farther than prokaryotic orthologs in the same protein

family. The orthologous groups with this behavior included mitochondrial ribosomal proteins and ini-

tiation factors of mitochondrial translation (Supplementary file 2e). It has been previously postu-

lated that mitochondrial ribosomal proteins diverged significantly faster in eukaryotes, compared to

the divergence between their bacterial orthologs, due to compensatory protein substitutions
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following the accumulation of slightly deleterious substitutions in the mitochondrial ribosomal

RNA (Barreto and Burton, 2013).

Having established, in the first half of the manuscript that conservation of molecular function sig-

nificantly limits long-term sequence evolution, we investigated, in the second half, how different pro-

tein sites contribute to the observed divergence constraints. Specifically, whether the same protein

sites are conserved between ancient orthologs in different phylogenetic lineages, how sites with dif-

ferent fitness effects of amino acid substitutions contribute to the divergence limit, and how struc-

tural locations of protein sites affect their long-term divergence patterns. We also explored how

different levels of functional specificity constrain sequence and structural divergence.

To investigate whether the same protein sites are usually conserved between orthologs in differ-

ent phylogenetic lineages, we aligned the sequences of ancient enzyme orthologs with the same

molecular function (see Materials and methods). We then calculated how often each protein site is

occupied by identical amino acids across pairs of orthologs from phylogenetically independent

linages (Figure 3—figure supplement 1). Orthologous protein pairs from independent lineages

were obtained using species’ pairs that do not share any edges in the corresponding phylogenetic

tree (Arnold and Stadler, 2010) (Figure 3a); for example, in Figure 3a the pair D-H is independent

of the pair A-B but not of the pair E-F. We performed the above analysis using 30 enzymatic activi-

ties for which at least 20 independent pairs of orthologs could be identified based on annotations in

the KEGG database (Kanehisa et al., 2016) (see Materials and methods). The results demonstrated

that only a relatively small fraction of protein sites (10–20%) are universally conserved, that is, they

are identical in a majority (>90%) of independent lineages (Figure 3b). Therefore, the observed

long-term divergence limit is not primarily due to sets of universally conserved protein sites; instead,

different sites contribute to the limit in independent phylogenetic lineages. By comparing the frac-

tions of universally conserved sites to the average sequence identity between distant orthologs

(~40%, Figure 2a) we found that these sites account, on average, for only ~35% of the observed

sequence identity at long divergence distances. The analysis also revealed that different protein
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Figure 3. Conservation of protein sites in phylogenetically independent lineages. To identify the fractions of protein sites that are universally conserved

— defined as sites that are identical in at least 90% of orthologs — we considered phylogenetically independent lineages. (a) Illustration of pairs of

species (e.g. A–B and D–H) representing phylogenetically independent lineages. In the figure, A-B and D-H are pairs of species that diverged within a

certain time window (illustrated by the blue shaded region); these species pairs do not share more recent edges in the phylogenetic tree. (b) The

distribution of the fraction of universally conserved sites across 30 enzymatic families. The analysis was performed using 30 enzymatic families for which

at least 20 independent pairs of orthologs with the same molecular function could be identified based on annotations in the KEGG database

(Kanehisa et al., 2016) (see Materials and methods); pairs of orthologs that diverged >2 billion years ago were selected for this analysis. Error bars

represent the S.E.M. based on three replicates using different sets of orthologous pairs. The dashed red line represents the median of the distribution

(~13%).

DOI: https://doi.org/10.7554/eLife.39705.015

The following figure supplement is available for figure 3:

Figure supplement 1. Distribution of enzyme sites according to their conservation frequency.

DOI: https://doi.org/10.7554/eLife.39705.016

Konaté et al. eLife 2019;8:e39705. DOI: https://doi.org/10.7554/eLife.39705 6 of 21

Research Communication Evolutionary Biology

https://doi.org/10.7554/eLife.39705.015
https://doi.org/10.7554/eLife.39705.016
https://doi.org/10.7554/eLife.39705


families show different probability distributions of identical sites (Figure 3—figure supplement 1).

This is likely a consequence of diverse structural and functional requirements across protein families,

leading to protein-family specific constraints on protein sites.

We next investigated the long-term divergence patterns at protein sites with different fitness

effects of amino acid substitutions. To that end, we experimentally measured the fitness effects of all

possible single amino acid substitutions in a representative enzyme, the Escherichia coli dihydrofo-

late reductase (FolA, EC 1.5.1.3). We selected FolA for the experiments due to its small size (159

amino acids) and essential role in the E. coli metabolism (Benkovic et al., 1988); also, the long-term

protein sequence identity between FolA orthologs (~32%, see Figure 1a) is similar to other analyzed

enzymes (Figure 2a). Following a recently described strategy (Kelsic et al., 2016), we used the Mul-

tiplex Automated Genome Engineering (MAGE) approach (Wang et al., 2009) to introduce every

possible amino acid substitution at each FolA site in E. coli. To evaluate the relative fitness effects of

protein substitutions we measured the growth rate of strains containing each protein variant com-

pared to the ‘wild type’ (WT) strain into which substitutions were introduced. Relative growth rates

were measured in parallel by performing growth competition experiments between the pooled

mutants. Amplicon sequencing of the folA gene was then used to measure the relative changes of

mutant and WT abundances as a function of time (see Materials and methods, Supplementary file

3).

Using the MAGE growth measurements in E. coli, we investigated the patterns of long-term

sequence divergence at protein sites with different fitness effects of amino acid substitutions.

Specifically, we sorted FolA protein sites into several groups according to their experimentally

measured average fitness effects (Figure 4—figure supplement 1), and explored

sequence divergence for sites within each fitness group (Figure 4a, different colors). We evalu-

ated sequence identity between FolA orthologs across divergence times using all pairwise com-

parisons between ~300 orthologous sequences from the COG database (Galperin et al., 2015).

Although, as expected, sites with stronger fitness effects diverged more slowly, our analysis

revealed interesting differences in temporal divergence patterns for sites with small and large fit-

ness effects. For sites in the least deleterious fitness group (Figure 4a, blue) we observed, simi-

lar to the global sequence identity, a substantial decrease (~10 fold, see Equation 5 in

Materials and methods) in mutual divergence rates after ~1.5 billion years of evolution.

Notably, even for FolA sites with mild fitness effects, sequence identity remains above 25% at

long divergence distances. In contrast to sites with mild fitness effects, sites with the most dele-

terious mutations (Figure 4a, black) displayed a much slower, but approximately constant aver-

age divergence rate throughout evolutionary history. This pattern suggests that, in contrast to

divergence at sites with small fitness effects, the divergence at sites with large effects is not

yet close to saturation.

To assess the generality of the FolA results we used another dataset (Kelsic et al., 2016),

obtained using MAGE, of fitness values for all possible amino acids substitutions in the E. coli trans-

lation initiation factor InfA (Figure 4b). Consistent with the relatively higher level of sequence con-

servation of InfA, we observed lower average mutant growth rates and lower rates of sequence

divergence in each fitness group. Nevertheless, the long-term divergence patterns were qualitatively

similar between the two proteins. For sites in the least deleterious InfA fitness group (Figure 4b,

blue), we observed a substantial decrease in the divergence rate after ~2 billon years of evolution. In

contrast, sites with strongest fitness effects (Figure 4b, pink) displayed a slower but approximately

constant divergence rate.

Because the fitness effects of mutations at a protein site may change in evolution (Lunzer et al.,

2010; Chan et al., 2017), it is interesting to investigate how fitness effects measured in one species,

such as E. coli, correlate with the site conservation in other species at the divergence limit. To

explore this question, we calculated the probability that a protein site is occupied at long evolution-

ary times (~2 billion years for FolA and ~2.5 billion years for InfA) by the same amino acid in phyloge-

netically independent lineages (Figure 3a). We then investigated how this probability changes as a

function of the average fitness effects of substitutions at the site measured in E. coli (Figure 4c). For

both FolA and InfA, the probability that a protein site is identical at large divergence distances first

increases, approximately linearly with increasing average fitness effects, and then begins to saturate

for sites with large (>30% growth rate decrease) fitness effects. Thus, the fitness effects at a protein

site correlate with the site’s conservation even after billions of years of evolution.
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The sequence constraints revealed by our analysis likely arise due to the conservation of cor-

responding protein structures required for efficient catalysis and molecular

function (Wilson et al., 2000; Watson et al., 2005). Therefore, in addition to sequence diver-

gence we also investigated the long-term structural divergence of orthologous proteins with the

same function. For this analysis we used >1000 orthologous pairs of enzymes sharing all 4 EC

digits with known 3D structures (Berman et al., 2000) (see Materials and methods); structures

of orthologous enzymes were aligned using the TM-align algorithm (Zhang and Skolnick, 2005).

This analysis demonstrated that the average root mean square deviation (RMSD) between

0 1 2 3 4
0

20

40

60

80

100

a.

FolAS
e

q
u

e
n

ce
 id

e
n

tit
y 

(%
)

Divergence time (billion years)

0 1 2 3 4
0

20

40

60

80

100

b.

InfAS
e

q
u

e
n

ce
 id

e
n

tit
y 

(%
)

Divergence time (billion years)

Fitness cost:
 >0.45
 0.15-0.45
 0.05-0.15
 <0.05

0 10 20 30 40

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70

0.6

0.8

1.0

FolA

c.

P
ro

b
a
b
ili

ty
 o

f 
si

te
 id

e
n
tit

y 
in

 
in

d
e
p
e
n
d
e
n
t 
lin

e
a
g
e
s

Relative growth decrease (% of WT)

InfA

Figure 4. Sequence divergence of protein sites with different fitness effects of mutations measured in E. coli. (a) The divergence of sequence identity

for FolA protein sites with different average fitness effects of mutations (measured in E. coli) is shown using different colors. The average sequence

identities were calculated using bacterial FolA orthologs available in the COG database (Galperin et al., 2015); divergence times were estimated using

bacterial 16S rRNA sequences (see Materials and methods). Error bars represent the S.D. of sequence identity in each bin. (b) Similar to panel (a), but

for the sequence divergence at protein sites of the E. coli translation initiation factor InfA. (c) The probability that protein sites in FolA orthologs (upper

panel) and InfA orthologs (lower panel) are occupied by identical amino acids as a function of the average mutant fitness (measured in E. coli) at the

corresponding protein sites. The probability represents the fraction of phylogenetically independent pairs of orthologs in which sites are identical at

long divergence times (2 ± 0.25 billion years for FolA, and 2.5 ± 0.25 billion years for InfA). Error bars represent the S.E.M. across sites.

DOI: https://doi.org/10.7554/eLife.39705.017

The following figure supplements are available for figure 4:

Figure supplement 1. Distribution of average fitness effects of amino acid substitutions.

DOI: https://doi.org/10.7554/eLife.39705.018

Figure supplement 2. Reproducibility of experimentally measured average fitness effects of amino acid substitutions across FolA sites.

DOI: https://doi.org/10.7554/eLife.39705.019
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C-alpha atoms of the orthologous enzymes increases (Spearman’s r = 0.44, p-value<1e-20) with

divergence time (Figure 5a). Nevertheless, the C-alpha RMSD between orthologs rarely

increases beyond 3 Å, even at long evolutionary distances. Consistent with sequence evolution

(Figure 1), we also observed a substantial decrease in the rate of structural divergence

after ~1.5 billion years of divergent evolution.

Only a small fraction of all enzyme residues forms an active site and directly participates in

catalysis. Therefore, we investigated next how the sequence divergence depends on the spatial

proximity of protein positions to active site residues. It was previously demonstrated that evolu-

tionary rates of amino acid substitutions correlate with protein sites’ spatial distance to catalytic

residues (Jack et al., 2016). Notably, differences in short-term evolutionary rates do not imply

the existence of a divergence limit, nor do they inform how site-specific divergence patterns cor-

relate with sites’ structural locations. Thus, the main goal of our analysis was to investigate the

temporal patterns of the long-term divergence, and the effective divergence limit for sites at

various distances to the active site. We considered catalytic site annotations available from the

Protein Data Bank (Berman et al., 2000), UniProt-KB (UniProt Consortium, 2015) and the Cata-

lytic Site Atlas (Porter, 2004) and quantified the average sequence divergence for sites at vari-

ous distances from catalytic residues (see Materials and methods, Figure 5b). We based this

analysis on the same set of enzymatic activities used to study global sequence divergence (Fig-

ure 1 and Figure 1—figure supplement 1). Although, as expected, residues close to the active

site were the most highly conserved (Jack et al., 2016; Halabi et al., 2009), even distant sites

displayed a substantial divergence limit (~40%) at long evolutionary distances. This result sug-

gests that the spatial constraints required for specific molecular function usually propagate

throughout the entire protein structure and significantly limit the long-term divergence even at

sites distant from catalytic residues.
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Figure 5. Long-term structural evolution of enzymes with the same molecular function. (a) The pairwise C-alpha root mean square deviation (RMSD) as

a function of the divergence time between pairs of orthologs annotated with the same EC number. RMSD values were calculated based on structural

protein alignments using the TM-align algorithm (Zhang and Skolnick, 2005). Gray dots represent pairs of considered orthologs, boxes indicate the

median and 25–75 RMSD percentiles for the corresponding divergence times, the vertical lines indicate the 5–95 percentiles, and the red line shows the

moving average of the data. (b) Long-term divergence of sequence identity of protein sites located at different distances to enzymes’ active site

residues. In this analysis we considered the same species and enzymatic activities used to explore the global sequence divergence (Figure 1 and

Figure 1—figure supplement 1); the average sequence identities within each distance shell (shown using different colors) were calculated across all

pairs of orthologs annotated with the same EC number (see Materials and methods). Error bars represent the S.E.M. across ortholog pairs.

DOI: https://doi.org/10.7554/eLife.39705.020

The following source data is available for figure 5:

Source data 1. RMSD versus divergence times for proteins with the same enzymatic function.

DOI: https://doi.org/10.7554/eLife.39705.021

Konaté et al. eLife 2019;8:e39705. DOI: https://doi.org/10.7554/eLife.39705 9 of 21

Research Communication Evolutionary Biology

https://doi.org/10.7554/eLife.39705.020
https://doi.org/10.7554/eLife.39705.021
https://doi.org/10.7554/eLife.39705


Finally, we investigated how various degrees of functional conservation affect the long-term diver-

gence between orthologs. To that end, we compared the long-term sequence and structural similari-

ties of enzymes sharing their full EC classification to those sharing only the first three digits of their

EC classification (Figure 6a and b); for this comparison we only used orthologs from species with

divergence times > 2 billion years (see Materials and methods). In contrast to enzymes sharing all

four EC digits, conservation of the first three digits indicates only a general class of substrates or

cofactors (Bairoch, 1999). This analysis revealed significantly lower long-term sequence identities

(27% vs. 37% identity, Mann-Whitney p-value<10�20) and structural similarities (2.4 vs. 1.8 Å RMSD,

P-value 2 � 10�18) between orthologs sharing only partial EC numbers. Notably, orthologs sharing

only the first three EC digits are still substantially more conserved, both in sequence and structure
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Figure 6. Effect of functional specificity on long-term sequence and structural divergence between orthologs. (a) Sequence identities between

orthologous pairs of enzymes that diverged over two billion years ago. The long-term sequence divergence between pairs of orthologs sharing the

same EC number (gray, n = 272) is compared to the divergence between pairs only sharing the first three digits of their EC numbers (red, n = 265),

that is, enzymes conserving only a general class of substrates or cofactors. The results are based on enzyme COGs for the 22 species used to analyze

global sequence divergence (Supplementary file 1). Blue points show sequence identities between pairs of proteins with the same structural

fold (Dawson et al., 2017) but unrelated enzyme activities, that is, activities sharing no digits in the EC classification (n = 298, see

Materials and methods). The right blue Y axis represents the average number of amino acid types accepted per protein site during long-term protein

evolution. (b) Similar to panel a, but showing the corresponding C-alpha structural divergence (RMSD) between protein pairs. (c) Long-term sequence

identities between orthologous enzyme pairs at the same levels of structural similarity. Results are shown for pairs of enzymes sharing their full EC

classification (gray dots), or only sharing the first three digits of their EC classification (red dots). In all panels: *(p<0.05), **(p<1e-4), ***(p<1e-10) for the

Mann-Whitney test.

DOI: https://doi.org/10.7554/eLife.39705.022

The following source data is available for figure 6:

Source data 1. Sequence identities between ancient orthologs sharing the same EC number and only the first three digits of their EC numbers.

DOI: https://doi.org/10.7554/eLife.39705.023
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(p-values<10�20), than pairs of enzymes with the same structural fold, but unrelated enzyme

activities (i.e. enzymes sharing no digits in the EC classification) (Figure 6a and b, Dawson et al.,

2017).

We also investigated the sequence constraints at the same level of protein structural divergence

for proteins with different degrees of functional conservation. To that end, we calculated the

sequence identity between orthologs, sharing either their full or partial EC numbers, at different

bins of long-term structural similarity (Figure 6c). Interestingly, we observed that even at the same

level of C-alpha RMSD divergence, orthologs sharing full EC numbers usually have higher levels of

sequence identity compared to orthologous pairs with the same level of structural divergence but

sharing only three EC digits. This result indicates that conservation of molecular function constrains

sequence divergence even beyond the requirement to maintain a specific spatial structure.

Discussion
Our analysis demonstrates that, in contrast to proteins with the same fold (Rost, 1997), the require-

ment to strictly conserve the same molecular function significantly limits the long-term sequence and

structural divergence of protein orthologs. Although we confirmed the result by Povolotskaya and

Kondrashov (2010) that ancient protein orthologs are still diverging from each other, our study

reveals that the rate of this divergence becomes increasingly slow for orthologs that strictly conserve

their function. Even a slight relaxation of functional specificity, for example from full to partial EC

conservation (Figure 6a and b), leads to substantially more pronounced long-term sequence and

structural divergence. Similarly, a substantial sequence identity between homologous restriction

endonucleases is usually limited to isoschizomers, that is, proteins specific to the same target DNA

sequence (Pingoud et al., 2014).

We believe that the observed divergence patterns can be explained by the following mechanistic

model. Proteins with the same molecular function usually conserve the identity of their chemical and

biological substrates and interaction partners. This conservation leads to functional pressure to

closely preserve the spatial positions and dynamics of key protein residues necessary for efficient

catalysis and function (Lehninger et al., 2013). In turn, the requirement to continuously preserve

structural properties and functional dynamics of key protein residues likely imposes a strict require-

ment to preserve the overall protein structure, in other words, structural optimality necessary for effi-

cient and specific protein function. The evolutionary pressure to preserve structural optimality (to

within <3 Å C-alpha RMSD) required for a given molecular function leads, in agreement with the

results by Chothia and Lesk (1986) and others (Gilson et al., 2017), to substantial levels of overall

sequence conservation and the observed divergence limit. Our analysis further demonstrates that

less than four amino acid types are accepted, on average, per site for proteins strictly conserving

their molecular function.

We note that the observed conservation may reflect both the impact of amino acid substitutions

on protein activity, due to changes in equilibrium positions and dynamics of protein residues, and on

protein abundance, due to changes in overall protein stability (Bershtein et al., 2015; Adkar et al.,

2017). Nevertheless, direct and comprehensive biochemical experiments demonstrated that the del-

eterious effects of mutations primarily arise from changes in specific protein activity rather than

decreases in protein stability and cellular abundance (Firnberg et al., 2016). Our results support this

model, demonstrating that conservation of functional specificity imposes substantially more stringent

long-term sequence constraints than simply conservation of protein folds and protein stability.

Indeed, while every folded protein should maintain its stability, our results demonstrate that main-

taining stable folds does not constrain long-term divergence to more than 10-15% sequence iden-

tity, which is substantially less than the requirement for maintaining specific molecular functions

(~40% sequence identity).

The presented results demonstrate that only about a third of the sequence conservation between

distant orthologs with the same molecular function can be attributed to universally

conserved protein sites, that is, sites occupied by identical amino acids in almost all lineages. In con-

trast, we found that different protein sites are usually identical between orthologs from different lin-

eages. This result is likely due, at least in part, to the epistatic nature of protein sequence

landscapes, where mutations that are neutral in one lineage are often prohibitively deleterious in

another (Breen et al., 2012; Lunzer et al., 2010). In the context of the aforementioned divergence
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model, the evolution of mitochondrial ribosomal proteins in eukaryotes (Figure 1—figure supple-

ment 6) provides an interesting example, suggesting that orthologs’ divergence can be substantially

accelerated by co-evolution with their interaction partners or relaxation of selection pressures.

Our experimental and computational analyses also delineate two distinct stages of the long-

term divergence of orthologs with the same molecular function. During the first 1–2 billion years

of divergence, substitutions at protein sites with mild fitness effects lead to a substantial (40–

60%) decrease in sequence identity. After the first stage, divergence at these sites effectively

saturates. The saturation at sites with small fitness effects, combined with very slow divergence

rate at sites with large fitness effects (Figure 4), leads to a substantially slower sequence and

structural divergence during the second stage. Interestingly, as a consequence of this slowdown,

for the past billion years there has not been a substantial decrease in sequence and structural

similarity between ancient orthologs with the same molecular function. Further analyses of bio-

chemical, biophysical and cellular constraints will reveal how various structural and functional

properties influence proteins’ long-term evolution, and how protein functional efficiency may be

compromised by deleterious mutations (Shendure and Akey, 2015).

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Strain, strain
background
(Escherichia coli EcNR2)

MG1655, bla, bio-,
l-Red+, mutS-::cmR

PMID: 19633652 Addgene #26931

Sequence-
based
reagent

90 bp DNA
oligos with
phosphorothioated bases

This paper See Supplementary file 4 100 nmole DNA
Plate oligo,
Integrated DNA
Technologies

Commercial
assay or kit

Miseq Reagent
Kit V2

Illumina MS-102–2002

Commercial
assay or kit

sybr green ThermoFisher S7567

Commercial
assay or kit

Qubit HS DNA kit ThermoFisher Q32854

Commercial
assay or kit

Q5 Hot Start High-
Fidelity Mastermix

NEB M0494S

Commercial
assay or kit

DNA clean and
concentration kit 5

Zymo Research D4013

Commercial
assay or kit

illustra bacteria
genomicPrep
Mini
Spin kit

GE life sciences 28904259

Commercial
assay or kit

Agilent DNA
1000 kit

Agilent
Genomics

5067–1504

Software,
algorithm

SeqPrep v1.1 John St. John https://github.com
/jstjohn/SeqPrep

Software,
algorithm

Bowtie2 PMID:
22388286

Software,
algorithm

Perl scripts
to count
mutant reads

This paper https://github.com/
platyias/count-
MAGE-seq
(copy archived
at https://github.
com/elifesciences-
publications/
count-MAGE-seq).

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Other Turbidostat for
growth
competition
assay

PMID:
23429717

Considered enzyme activities and corresponding protein orthologs
We selected for analysis the sequences annotated in UniProt (UniProt Consortium, 2015) with EC

numbers associated with the following metabolic pathways (defined in the KEGG

database) (Kanehisa et al., 2016): Glycolysis and gluconeogenesis, pentose phosphate pathway,

TCA cycle, purine metabolism, pyrimidine metabolism. Using the protein sequences from 22 diverse

organisms (Supplementary file 1) we constructed clusters of orthologous groups (COGs) using the

EdgeSearch algorithm (Kristensen et al., 2010). Following previous studies, we considered any two

proteins from different species in the same COG as orthologs (Tatusov et al., 1997). COGs were

obtained using the COGsoft software (Kristensen et al., 2010), starting from an all-against-all psi-

blast (Altschul et al., 1997) search, setting the database size at 108, and using a maximum consid-

ered E-value of 0.1. To obtain the largest number of likely orthologs we did not apply a filter on low

complexity or composition-based statistics. Only proteins sharing the same EC number and assigned

to the same COG were compared, and only COGs with sequences in 10 or more of the 22 species

were used.

In order to exclude proteins clearly showing evidence of Horizontal Gene Transfer (HGT), we con-

structed a maximum likelihood phylogenetic tree of the 12 prokaryotes considered in our analysis

using a concatenated alignment of marker genes (Wu and Scott, 2012). The species tree was then

manually compared to the individual trees of the prokaryotic sequences sharing the same molecular

function within each COG; COG-specific trees were built using the GAMMA model of amino-acid

substitution implemented in the RAxML software (Stamatakis, 2014). Proteins that showed clear dif-

ferences in tree topologies, suggesting HGT, were excluded from further analysis. Ancient gene

duplications, that is, duplications occurring prior to the divergence between considered species,

often lead to cases in which enzymes in the same COG but from different species have diverged for

longer than the corresponding species’ divergence times; thus, we did not consider COGs with tree

topologies showing evidence of ancient gene duplications. Ancient gene duplications were defined

as those occurring prior to the last common ancestor of 3 or more of the 22 species considered in

the analysis.

The same procedure was used to select non-enzymatic COGs for analyses (Figure 1—figure sup-

plement 5). However, in this case we only considered COGs for which none of the proteins were

annotated in UniProt with metabolic EC numbers. Naturally, UniProt functional annotations for non-

enzymes vary in terms of their source and format. Therefore, it is difficult to ascertain the degree of

functional specificity and conservation between non-enzymatic orthologs. To address this, we manu-

ally checked that the molecular functions associated with proteins in the same COG were related,

although we could not ascertain perfect conservation of molecular function.

Models of long-term protein sequence evolution
Global sequence identities for pairs of proteins annotated with the same molecular function in the

same COG were calculated using pairwise alignments with ClustalW2 (Larkin et al., 2007).

Sequence identity was computed as the number of identical sites at aligned positions, divided by

the total number of aligned sites, excluding gaps. Divergence times between organisms were

obtained from the TimeTree database (Hedges et al., 2006) (November, 2015) and used as a proxy

for protein divergence times; in the analysis we used the mean divergence times across studies listed

in the database. Divergence times between bacteria and archaea were set to 4 billion years based

on current estimates for the occurrence time of their Last Common Ancestor (Sheridan et al., 2003;

Battistuzzi et al., 2004) and existing evidence of an early origin of life on Earth (Bell et al., 2015). It

is likely that ancient eukaryotic genes originated through episodic endosymbiotic gene transfer

events and vertical inheritance from bacterial and archaeal genomes (Ku et al., 2015;
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Thiergart et al., 2012). Because of the discrete nature of such transfer events, the vast majority of

individual prokaryotic-eukaryotic orthologous pairs are likely to have diverged from each other long

before the origin of eukaryotes (1.8 billion years ago [Parfrey et al., 2011]); specifically, because

most ancient prokaryotic species would not have transferred genes to eukaryotes. Thus, based on

the median divergence time between the considered prokaryotes (~4 billion years,

Supplementary file 1), divergence times between eukaryotes and prokaryotes were set in our analy-

ses at 4 billion years. The results presented in the paper remain insensitive to the exact value of this

divergence estimate (within the 3–4 billion year interval). Based on the recently proposed affiliation

of eukaryotes and members from the Lokiarchaeota (Spang et al., 2015), divergence times between

S. solfataricus and eukaryotes were set at 2.7 billion years, that is, the estimated age of the TACK

superphylum (Guy and Ettema, 2011; Betts et al., 2018).

In order to study the long-term divergence patterns of orthologs, we only used COGs containing

pairs of orthologs with at least five different divergence times distributed across 4 billion years.

Sequence divergence data were fitted with models 1 to 3 using the least-squares minimization algo-

rithm implemented in the MATLAB R2017a fitnlm function (The MathWorks, Inc, Natick, MA). The

best fits of model 1 and model two were compared using the F-test. To test whether the conserva-

tion of molecular function limits protein sequence divergence, the minimum sequence identity

parameter in model 2 (Y0, from Equation 2) was compared, for each enzymatic activity, to the aver-

age global sequence identity between unrelated protein pairs using the Wald test.

To investigate the effect of the uncertainty of divergence times’ estimates, we repeated the anal-

ysis of the 64 enzymatic activities while randomly assigning either the maximum or minimum value of

the divergence times between lineages reported in the TimeTree database. This analysis was per-

formed for a total of 1000 independent assignment runs. Across the independent assignment runs,

the expected long-term sequence identity between orthologs was higher than 25% for at least 90%

of enzymes (based on model 2), and the projected sequence identity after 7.8 billion years was

above 25% (based on model 3) for at least 75% of enzymes (Figure 1—figure supplement 7).

To assess the effect of computational functional annotations on the observed divergence results,

we repeated the analysis using only sequences with experimentally validated molecular functions

(Figure 1—figure supplement 3). To keep only sequences with validated molecular functions, we

manually reviewed published references for enzyme annotations in the BRENDA

database (Chang et al., 2015), and discarded any functional assignments that were based exclu-

sively on computational or high-throughput studies. After filtering for the experimentally validated

annotations, we only considered EC numbers corresponding to pairs of orthologs with at least four

different divergence times distributed across 4 billion years.

Calculation of the divergence rate
Based on Model 3, we determined the divergence rate, that is, the rate of the decrease in sequence

identity per time, at a given divergence time t by solving for the derivative of Equation 3 with

respect to time:

dy

dt
¼
d 100 � R0�t

a
þ 1

� ��a� �

dt
¼ �100 �R0

R0 � t

a
þ 1

� ��a�1

(5)

where y represents global sequence identity, t represents divergence time, R0 represents the aver-

age substitution rate, and a represents the shape parameter of the gamma distribution.

Equivalency between model two and a poisson divergence model with
allowed back substitutions
In the Jukes-Cantor model of nucleotide divergence (Tajima and Nei, 1984; Jukes and Cantor,

1969), the expected number of substitutions per site (d) between two sequences after a divergence

time t from a common ancestor is given by:

d¼�
a� 1

a
ln 1�

a

a� 1
1� yð Þ

� �

(6)

where y is the proportion of identical sites and a is the number of allowed nucleotide types (usually

4). The same model can be applied to the divergence of protein sequences (Yang et al., 2000;
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Ota and Nei, 1994), by setting a to the number of allowed amino acid types per protein site. Fur-

thermore, d = 2lt, where l represents the substitution rate per site per unit time, which is assumed

to be equal across all sites. Substituting d, and solving the above equation for y yields:

y¼
1

a
þ 1�

1

a

� �

exp �
2la

a� 1
t

� �

(7)

which is mathematically equivalent to model 2 Equation 2, with R0=
2la
a�1

, and Y0 =1

a
. Thus, Y0 can also

be interpreted as the inverse of the average number of amino acids accepted per protein site during

protein evolution.

FolA competition experiment in E. coli
To perform competition experiments we used the EcNR2 strain derived from E. coli K12 MG1655.

Mutagenesis was performed using Multiplex Automated Genomic Engineering (MAGE), as previ-

ously described (Wang et al., 2009). 90 bp DNA oligomers were designed around each folA codon

using the MG1655 wild type sequence as reference (Supplementary file 4). For each codon, all pos-

sible nucleotide variants were synthesized. To avoid simultaneous mutations of multiple codons, cells

were transformed targeting ten consecutive codons at a time. After four rounds of electroporation,

cells were recovered and pooled together at approximately the same concentration based on cell

counts. Two competition growth experiments were carried out, one for each half of the protein. For

the competition experiments, cells were grown in LB media in a turbidostat while maintaining con-

stant volume and cell density. Samples were taken every 2 hr for a period of 16 hr, spun down,

washed in PBS, spun down again and stored at �20˚C until all samples were collected. For each

competition, the corresponding FolA region was amplified through PCR while assigning a specific

DNA barcode for each time point. PCR products were then pooled and paired-end sequenced using

the MiSeq Reagent Kit two from Illumina. Sequence reads were deposited to the SRA database with

accession number: SRP152339.

To determine, at each time point, the abundance of each mutant relative to wild type, we joined

paired-end reads using SeqPrep (v 1.1) and aligned the joined reads to the folA gene sequence

using Bowtie2 (Langmead and Salzberg, 2012). We then counted the number of reads per mutant

using a custom script (Plata, 2018). Reads with more than a single mutated codon were discarded.

Counts were median-normalized to control for noise due to mutagenesis performed in batches of 10

codons. At each time point we calculated the ratio Rt of mutant to wild type (WT) reads. In exponen-

tial growth, the growth rate difference between a given mutant and WT was calculated based on the

slope of ln Rtð Þ as a function of time:

ln Rtð Þ ¼ mi�mwtð Þ � tþ ln R0ð Þ

where mi and mwt represent the mutant and WT growth rates, respectively. Growth rate differences

were calculated only for mutants with at least five time points with 20 or more reads. Relative growth

rates were calculated by dividing the slopes in the equation above by the number of e-fold increases

given the average dilution rate of the turbidostat (1.37/h).

To calculate a single value characterizing the effect of all possible mutations at a protein site, we

first averaged the relative growth rates of mutants resulting in the same amino acid change. We

then calculated the average fitness effect of mutations at each protein site by averaging across 20

possible amino acids substitutions (Supplementary file 3).

To estimate the sensitivity of our results to sequencing errors, we calculated the average fitness

effect of substitutions at each FolA site using the relative growth rates of mutant strains carrying

only 32 mutated codons selected at random out of 64 possible codons. We observed a high correla-

tion (Pearson’s r: 0.95, p-value<1e-20, Figure 4—figure supplement 2) between the average

growth rate effects at each site calculated using two non-overlapping subsets of 32 codons. As

expected, nonsense mutations and substitutions in the folA start codon had substantially stronger

average effects on growth rates compared to other substitutions (26% versus 4% slower growth than

WT, respectively. Mann Whitney U, p-value<10�20). Also, the relative growth rates due to synony-

mous codon substitutions were usually very mild (0.2% higher growth compared to WT); 97% of syn-

onymous substitutions had growth effects of less than 3%.
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Contribution of different sites to the divergence limit
In order to identify phylogenetically independent pairs of species, we aligned the 16S rRNA gene

sequences of bacterial species having orthologs annotated with the target 30 EC numbers (Fig-

ure 3—figure supplement 1). 16S rRNA sequences were obtained from the GreenGenes

database (DeSantis et al., 2006) (October, 2016). We then built maximum likelihood phylogenetic

trees based on the 16S alignments using RAxML (Stamatakis, 2014). Next, we used the Maximum

Pairing Problem approach byArnold and Stadler (2010) to find the largest number of edge-disjoint

pairs of species with 16S rRNA genetic distances corresponding to >2 billion years of divergence.

Divergence times were estimated from the 16S genetic distances based on the linear regression of

literature reported divergence times (Hedges et al., 2006) (Supplementary file 1). The F84 model

of nucleotide substitution implemented in the phylip package (Felsenstein, 2005) was used to com-

pute the genetic distances. Using the 16S alignment data, we calculated the probability that a pro-

tein site was identical across independent lineages. The probability was calculated as the fraction of

orthologous pairs from phylogenetically independent species pairs with identical amino acids at the

site. The amino acid identities at a given site were obtained based on the multiple sequence align-

ment of all orthologs associated with each EC number, obtained using ClustalW2 (Larkin et al.,

2007). A similar procedure was applied to analyze FolA and InfA orthologs from the COG database

(Figure 3c).

To investigate the divergence of sites with different fitness effects, we used sequences of FolA

and InfA bacterial orthologs from the COG database (Galperin et al., 2015). The FolA orthologs

annotated with the same EC number in UniProt (n = 311) and the InfA orthologs annotated with the

same KEGG Orthology (KO) number in KEGG (n = 514) were used to build multiple sequence align-

ments with ClustalW2 (Larkin et al., 2007). Divergence times were estimated from the 16S genetic

distances as described above. Within each divergence bin (Figure 4a,b), sequence identities of sites

with different average fitness effects (represented by different colors in Figure 4a,b) were averaged

across all pairs of orthologs at a given divergence time.

Analysis of global protein structural evolution
To study the divergence of protein structures as a function of time, we obtained PDB codes for all

proteins associated with EC numbers in the BRENDA database (Chang et al., 2015). We then

selected for the analysis species with experimentally solved enzyme structures for at least 10 differ-

ent EC numbers. Psi-blast searches with a conservative E-value cutoff of 10�6 were used to identify

orthologs (defined as bi-directional best hits) in the selected species. The 3D structures of ortholo-

gous pairs, annotated with the same EC number, were aligned using the TM-align

program (Zhang and Skolnick, 2005) to obtain the C-alpha RMSD values. Pairs of proteins were not

considered if more than 70% of the residues of the shortest protein could not be structurally aligned.

We also removed from the analysis pairs of structures with flexibility between domains, as they could

result in large RMSD values despite significant structural similarity. To identify such proteins we used

the FATCAT (Ye and Godzik, 2003) software to perform flexible structural alignments of all struc-

ture pairs. We then filtered the structural pairs that were split into two or more domains by the FAT-

CAT alignments.

Analysis of the enzyme active sites
To analyze divergence as a function of active site distance we used protein sequences associated

with the 64 EC numbers and 22 species considered in Figure 1 and Figure 1—figure supplement

1. To that end, PDB (Berman et al., 2000) was searched for homologous sequences annotated with

the same enzymatic activities and with known 3D structures. Annotations of active site residues for

the corresponding structures were obtained from the Catalytic Site Atlas (Porter, 2004), PDB and

UniProt-KB (UniProt Consortium, 2015). For each PDB structure with available active site informa-

tion, protein sites were then stratified into different layers according to the distance between their

alpha carbons and the centroid of the active site residues. Each pair of orthologs was then aligned

using ClustalW2 (Larkin et al., 2007) with a homolog in PDB annotated with the same activity and

with defined distance layers around the active site; the PDB sequence with the highest sequence

identity to either member of the pair was used for the alignment. Sequence identities for different
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layers were calculated based on the structural positions in the corresponding PDB reference

sequences.

Comparison of pairs of enzymes with the same structural folds
We used structural classifications of protein domains from the CATH database

(v4.2.0) (Dawson et al., 2017). For structural comparisons, we only considered PDB structures with a

single classified domain per chain. Protein pairs classified in CATH in the same homologous struc-

tural superfamily were considered as having the same fold. To obtain pairs of proteins in the same

fold but with different functions, we only considered PDB structures annotated with different EC

numbers in BRENDA. For this analysis we randomly selected 300 pairs of structures with the same

fold that do not share any digits of their EC classification.
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