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Abstract

For more than a decade, the misfolding avoidance hypothesis (MAH) and related theories have dominated evolutionary discussions

aimed at explaining the variance of the molecular clock across cellular proteins. In this study, we use various experimental data to

further investigate theconsistencyof theMAHpredictionswithempirical evidence.Wealsocriticallydiscussexperimental results that

motivated the MAH development and that are often viewed as evidence of its major contribution to the variability of protein

evolutionary rates. We demonstrate, in Escherichia coli and Homo sapiens, the lack of a substantial negative correlation between

protein evolutionary rates and Gibbs free energies of unfolding, a direct measure of protein stability. We then analyze multiple new

genome-scale data sets characterizing protein aggregation and interaction propensities, the properties that are likely optimized in

evolution to alleviate deleterious effects associated with toxic protein misfolding and misinteractions. Our results demonstrate that

the propensity of proteins to aggregate, the fraction of charged amino acids, and protein stickiness do correlate with protein

abundances. Nevertheless, across multiple organisms and various data sets we do not observe substantial correlations between

proteins’ aggregation- and stability-related properties and evolutionary rates. Therefore, diverse empirical data support the conclu-

sion that the MAH and similar hypotheses do not play a major role in mediating a strong negative correlation between protein

expression and the molecular clock, and thus in explaining the variability of evolutionary rates across cellular proteins.
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Significance

Evolutionary rates vary substantially across cellular proteins. Understanding the nature of the molecular clock and its

variability across proteins is a foundational question in molecular evolution. The popular and currently dominant theory

to explain the molecular clock variability is the misfolding avoidance hypothesis (MAH). The role and importance of the

MAH is currently under active debate. In this article, we discuss how to appropriately test the MAH based on available

empirical data. We then rigorously test the hypothesis using more than a dozen new genome-wide data sets that

characterize protein stability and aggregation propensities. Our results demonstrate that the MAH is unlikely to play a

major role in explaining the variability of the molecular clock across proteins.

� The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
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Introduction

Protein evolutionary rates vary by orders of magnitude across

cellular proteins, but the mechanisms underlying this variabil-

ity are currently unknown (Koonin 2012). Although protein

expression was shown to be the strongest predictor of protein

evolutionary rates across species (Pal et al. 2001, 2006), the

causes of the anticorrelation between expression and protein

evolutionary rate are not understood (Zhang and Yang 2015).

The popular misfolding avoidance hypothesis (MAH) posits

that the sequences of highly abundant proteins evolve slowly

primarily due to increased selection against misfolded protein

toxicity (Drummond et al. 2005; Drummond and Wilke 2008;

Yang et al. 2010). The recent availability of genome-wide

experimental data on protein stability has reinvigorated the

debate about the model of protein evolution based on the

MAH (Plata and Vitkup 2018; Razban 2019).

We read with interest the recent article “Protein melting

temperature cannot fully assess whether protein folding free

energy underlies the universal abundance–evolutionary rate

correlation seen in proteins” by Razban (2019). This article is

related to our previous analyses, that is, Plata et al. (2010) and

especially Plata and Vitkup (2018). Razban’s study discusses

our results showing a lack of empirical support for the MAH

based on the genome-wide protein melting temperature (Tm)

data obtained by Leuenberger et al. (2017). To avoid potential

misunderstanding in the field, in this article we address inac-

curacies in the characterization of our previous work, com-

ment more broadly on the proper usage of experimental data

to test the MAH, and then further test the hypothesis using

multiple new empirical data sets.

The MAH can be tested by investigating the two key pre-

dictions of the hypothesis: 1) protein abundance positively

correlates with protein stability (Drummond and Wilke

2008; Zhang and Yang 2015), and 2) protein stability sub-

stantially affects the variation of evolutionary rates across cel-

lular proteins. As we demonstrated previously, a careful re-

analysis of the proteome-wide Tm measurements obtained by

Leuenberger et al. (2017) shows no support for the MAH in

Escherichia coli and three other investigated species (Plata and

Vitkup 2018). Razban’s study states that our analysis provides

support for the MAH in E. coli due to a correlation between

protein abundances and melting temperatures. This claim is

not correct and, we believe, exemplifies a common and un-

fortunate confusion. As we specifically discussed (Plata et al.

2010; Plata and Vitkup 2018), the MAH cannot be validated

simply by demonstrating a weak correlation between protein

abundance and stability, that is, the relationship (1) above.

The MAH, at its core, is not only about the stability of highly

expressed proteins but also about a major effect of protein

stability on the level of sequence constraints across cellular

proteins. Thus, it is essential to investigate whether protein

stability accounts for any substantial fraction of the variance

of evolutionary rates across proteins.

In this study, we analyze available Gibbs unfolding free

energies (DG0) for E. coli and Homo sapiens proteins

(Kumar et al. 2006) and multiple Tm proteome-wide data

sets characterizing protein misfolding and aggregation pro-

pensities in several species (Levy et al. 2012; Savitski et al.

2014; Becher et al. 2018; Mateus et al. 2018; Volkening

et al. 2019). Notably, DG0 and Tm measurements represent

different and complementary approximations for in vivo pro-

tein stability. Although an advantage of DG0 is that it is the

direct measure of protein stability, an advantage of genome-

wide Tm measurements is that they represent proxies of pro-

tein stability in the natural cellular environment. Our analyses,

using these two different measures of protein stability, show

no support for a major role of the MAH in any considered

organism.

Results

The central message of Razban’s analysis is that the absence

of the expected relationship between Tm and protein abun-

dance may be due to an imperfect correlation between mea-

sured Tm and DG0 (Razban 2019). Razban evaluated this

correlation based on the error model constructed using the

E. coli data set from Leuenberger et al. (2017). To address the

issue of the correlation between protein melting temperature

and stability, we analyzed available data characterizing pro-

tein unfolding Gibbs free energies, DG0. Empirical DG0 values

have now been obtained for a substantial number of proteins

in E. coli and H. sapiens and are available in the ProTherm

database (Kumar et al. 2006). This analysis revealed that

Razban’s theoretical model is inconsistent with the strong

empirical correlation for E. coli proteins between Tm measure-

ments from Leuenberger et al. (2017) and DG0 values in the

ProTherm database (Pearson’s r¼ 0.69, P-value¼ 0.005;

Spearman’s r¼ 0.62, P-value¼ 0.01).

Importantly, the direct measure of protein stability, DG0,

allows us to test the MAH regardless of an imperfect correla-

tion between Tm and DG0. For the subsets of proteins with

available DG0 measurements, we were able to robustly repro-

duce a significant anticorrelation between evolutionary rates

and mRNA abundances (fig. 1, blue; supplementary table 1,

Supplementary Material online; Spearman’s r ¼ �0:56,

P ¼ 2� 10�3, for E. coli; r ¼ �0:54, P ¼ 2� 10�4; for

H. sapiens). Thus, the mechanisms that make highly expressed

proteins evolve more slowly are likely to be reflected in the

properties of these proteins. But contrary to the MAH predic-

tions, we did not observe, for E. coli and H. sapiens proteins, a

negative correlation between DG0 and evolutionary rates

(fig. 1, red); we also did not observe positive correlations be-

tween DG0 and either protein or mRNA abundances (fig. 1,

light and dark gray, respectively). When we restricted the DG0

analysis to include only monomeric proteins with two-state

reversible (un)folding, the relationship between protein stabil-

ity and abundance in E. coli became marginally significant but
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in the direction opposite to the one predicted by the MAH

(Spearman’s r ¼ �0:39, P ¼ 0:06; supplementary fig. 1,

Supplementary Material online). This pattern may be due to

well-known effects associated with the activity–stability trade-

off, that is, protein functional optimization which often leads

to lower protein stability (Wang et al. 2002; Tokuriki et al.

2008; Knies et al. 2017). In summary, in agreement with the

conclusions based on Tm measurements from Leuenberger

et al. (Plata and Vitkup 2018), the empirical DG0 data also

do not provide any support for a major role of the MAH in

explaining the variability of evolutionary rates across proteins.

In our view, the main caveat with Leuenberger et al. data

set, in the context of testing the MAH, is not a poor correla-

tion between Tm and DG0. We previously demonstrated a

substantial correlation (Pearson’s r ¼ 0:75, P < 10�20;

Spearman’s r ¼ 0:64, P < 10�20) between these two char-

acteristics of protein stability for measurements performed by

the same research group (Plata and Vitkup 2018); and, as

described above, we now also confirmed this correlation spe-

cifically for Tm measurements from Leuenberger et al. Instead,

intrinsic protein stability may simply not serve as a good proxy

for protein aggregation propensity, which is likely to mediate

misfolding toxicity. The protein melting temperatures

obtained by Leuenberger et al. (2017) are based on data

from limited proteolysis (LiP), which increases due to local

protein unfolding triggered by higher temperatures; below,

we refer to these melting temperature measurements using

the term T LiP
m . An alternative method, developed by Savitski

et al. (2014), uses protein aggregation (Agg) as a proxy of

unfolding. This method estimates melting temperatures by

quantifying proteins’ concentrations in soluble cellular frac-

tions as a function of temperature; we refer to these melting

temperature measurements using the term TAgg
m . Because

TAgg
m is likely to be a good measure of protein propensity to

aggregate and therefore to cause misfolding toxicity, we an-

alyzed next its correlations with protein abundance and evo-

lutionary rates.

To analyze the potential effects of protein aggregation on

protein evolution, we used the TAgg
m data for approximately

1,500 E. coli proteins based on measurements performed in

cells and natural cellular lysates (Mateus et al. 2018).

Interestingly, we found that in both data sets T
Agg
m signifi-

cantly correlated with protein abundances (fig. 2A, light

gray; supplementary table 2, Supplementary Material online;

Spearman’s r ¼ 0:20, P < 10�14, for cells; r ¼ 0:21,

P < 10�15, for cellular lysates). However, we observed no

significant correlations between TAgg
m and evolutionary rates

(fig. 2A, red). T
Agg
m were also independently measured in two

different H. sapiens cell lines: HeLa cells (Becher et al. 2018),

where the TAgg
m for approximately 4,000 proteins were

obtained for intact cells in different cell-cycle stages (G1/S

transition and mitosis), and K562 chronic myeloid leukemia

cells (Savitski et al. 2014), where the T
Agg
m for approximately

2,000 proteins were obtained for intact cells and cellular

lysates. Analyzing these measurements, we found that across

all human data sets T
Agg
m also positively correlated with protein

A

B

FIG. 1.—Correlations between experimentally measured DG0 values, protein abundances, mRNA abundances, and protein evolutionary rates. (A) E. coli

(n ¼ 28) and (B) H. sapiens (n ¼ 42). The correlations between evolutionary rates and unfolding Gibbs free energies, DG0, are shown in the first figure

column (red). The correlations between protein evolutionary rates and mRNA abundances are shown in the second column (blue). The correlations between

DG0 and protein abundances are shown in the third column (light gray), and the correlations between DG0 and mRNA abundances are shown in the fourth

column (dark gray). Solid lines represent the least square regression fits to the data. Spearman’s correlation coefficients and corresponding P-values are

shown, significant correlations are highlighted in bold.
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abundances (fig. 2B, light gray; Spearman’s

r ¼ 0:20; P < 10�38; r ¼ 0:19, P < 10�32; r ¼ 0:29,

P < 10�36; and r ¼ 0:16, P < 10�11). For the K562 data

sets, T
Agg
m values were also negatively correlated with protein

evolutionary rates (fig. 2B, red; Spearman’s r ¼ �0:14,

P < 10�9, for both cells and lysate). Finally, TAgg
m data were

also obtained for approximately 800 proteins in Arabidopsis

thaliana (Volkening et al. 2019). For that data set, we did not

find any correlation of T
Agg
m with protein abundances (fig. 2C,

light gray) and the correlation with evolutionary rates was

significant, but positive (fig. 2C, red; Spearman’s r ¼ 0:18,

P < 10�6).

What fraction of the molecular clock variance is explained

by the observed correlations with TAgg
m ? According to the

MAH, avoiding cytotoxicity is a major driver of the variability

in protein evolutionary rates. However, our analyses demon-

strate that the anticorrelation between T
Agg
m and evolutionary

rates (fig. 2, red) is significant only in two (out of seven) data

sets, and even in these two, TAgg
m explain only ~2% of the

variance in evolutionary rates across proteins. For comparison,

mRNA abundance explains about an order of magnitude

higher fraction of the evolutionary rate variance (fig. 2, dark

blue), that is, approximately 15% for the same subset of

proteins. Furthermore, due to weak correlations between

TAgg
m and evolutionary rates, we found that the anticorrela-

tions between mRNA abundances and evolutionary rates do

not substantially decrease after controlling for TAgg
m (e.g.,

Spearman’s rEv:Rate�mRNA ¼ �0:38 and corresponding

Spearman’s partial r
Ev: Rate�mRNAjTAgg

m
¼ �0:37 for

H. sapiens K562 cells, for the data set with the strongest

effects of T
Agg
m ).

To put the observed correlations with TAgg
m into perspec-

tive, we note that multiple other protein properties, such as

the fraction of charged amino acids (Plata et al. 2010), protein

solubility (Plata et al. 2010), surface stickiness (Levy et al.

2012), and the number of protein–protein interaction part-

ners (Yang et al. 2012), have been shown to correlate with

protein abundance. In E. coli (Plata et al. 2010; Levy et al.

2012), Saccharomyces cerevisiae (Levy et al. 2012; Yang

et al. 2012), and H. sapiens (Levy et al. 2012), changes of

these properties for abundant proteins likely help to alleviate

deleterious effects of nonfunctional interactions and binding.

For example, protein surface nonadhesiveness or the fraction

of charged amino acids correlate positively, and with similar

A

B

C

FIG. 2.—Correlations between genome-wide melting temperatures, protein abundances, mRNA abundances, and protein evolutionary rates. (A) E. coli,

(B) H. sapiens, and (C) A. thaliana. Bar plots show the values of the Spearman’s correlation coefficients between evolutionary rates and melting temperatures

(red), between evolutionary rates and protein abundances (light blue), between evolutionary rates and mRNA abundances (dark blue), between melting

temperatures and protein abundances (light gray), and between melting temperatures and mRNA abundances (dark gray). Different experimental meth-

odologies used to measure Tm and different sample types are indicated above corresponding figure panels for E. coli and H. sapiens. Numbers of proteins in

the analyzed data sets are also shown; in each data set we kept only proteins for which all four parameters (melting temperature, protein abundance, mRNA

abundance, and evolutionary rate) are known. Asterisks above and below bars indicate significance levels: *P-value< 0.05, **P-value< 0.001, ***P-value

< 10�25.
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strength as TAgg
m , with protein abundances (fig. 3, light gray),

and negatively with evolutionary rates (fig. 3, red, supplemen-

tary tables 3 and 4, Supplementary Material online). However,

the ability of all these protein characteristics to explain the

variability of evolutionary rates is modest compared to that

of mRNA abundance (fig. 3, dark blue). Notably, protein sur-

face nonadhesiveness, the fraction of charged amino acids,

and effects quantified by T
Agg
m likely represent complementary

sources of constraints, as these properties do not correlate

strongly with each other (supplementary table 5,

Supplementary Material online).

Discussion

In this work we continued to test the MAH using various

empirical data sets, and the presented results agree with

and extend our previous conclusions (Plata et al. 2010; Plata

and Vitkup 2018). The original MAH hypothesis was moti-

vated, at least in part, by several studies demonstrating that

protein evolutionary rates correlate only weakly with the fit-

ness effects arising due to complete gene deletions (Hurst and

Smith 1999; Hirsh and Fraser 2001; Pal et al. 2003). However,

it is important not to conflate the effects associated with

complete gene deletions and the level of overall protein se-

quence constraints which directly affect the rate of molecular

clock. As discussed previously (Cherry 2010; Zhang and Yang

2015), protein sequence constraints primarily reflect selection

against small fitness effects of single mutations rather than

fitness loss associated with null mutations. Analogous obser-

vations have been made in different contexts. For example,

although close yeast gene duplicates provide good buffering

for complete knockouts of one homolog, individual amino

acid mutations in close duplicates are actually more deleteri-

ous compared with mutations in genes with distant homologs

(Plata and Vitkup 2014).

A key question that the MAH was supposed to resolve is

the nature of increased protein sequence constraints of highly

abundant proteins. The original MAH (Drummond et al.

2005; Drummond and Wilke 2008) and its multiple exten-

sions (Yang et al. 2010; Serohijos et al. 2012) proposed that

these constraints primarily originate from the increased stabil-

ity of highly expressed proteins. But, based either on direct

measurements of protein stability (DG0) or on its various prox-

ies (T LiP
m , TAgg

m , see supplementary table 6, Supplementary

Material online), we do not find support for this key MAH

prediction. Proteins clearly need to be stable to perform their

molecular and biological function, and maintaining protein

stability does constrain sequence evolution (Dill and

Bromberg 2012). Multiple deep mutational scanning experi-

ments demonstrate that fitness effects of substitutions corre-

late with their DDG0, that is, destabilizing mutations tend to

be more deleterious (Jacquier et al. 2013; Firnberg et al. 2014;

Sarkisyan et al. 2016). Nevertheless, overall stability con-

straints are similar for different proteins, and differences in

protein stability do not seem to play a major role in explaining

the variability of evolutionary rates across cellular proteins.

A B

C D

FIG. 3.—Correlations between protein surface nonadhesiveness, the fraction of charged amino acids, protein abundances, mRNA abundances, and

protein evolutionary rates. (A, B) E. coli and (C, D) H. sapiens. Bar plots in (A) and (C) show the values of Spearman’s correlation coefficients between

evolutionary rates and protein surface nonadhesiveness (red), between protein surface nonadhesiveness and protein abundance (light gray), and between

protein surface nonadhesiveness and mRNA abundance (dark gray). Bar plots in (B) and (D) show the values of Spearman’s correlation coefficients between

evolutionary rates and the fraction of charged amino acids (red), between the fraction of charged amino acids and protein abundance (light gray), and

between the fraction of charged amino acids and mRNA abundance (dark gray). In all panels the values of Spearman’s correlation coefficients between

evolutionary rates and protein abundances (light blue), and between evolutionary rates and mRNA abundances (dark blue) are also shown. Numbers of

proteins in the analyzed data sets are indicated, in each data set we kept only proteins for which all four parameters (protein abundance, mRNA abundance,

evolutionary rate and surface nonadhesiveness or the fraction of charged amino acids) are known. Asterisks above and below bars represent significance

levels: *P-value < 0.05, **P-value < 0.001, ***P-value < 10�25.
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There is no paradox here, and this conclusion is in fact con-

sistent with multiple empirical and biophysical data beyond

the Tm and DG0 measurements. For example, it was demon-

strated that the strength of the correlation between evolu-

tionary rates and mRNA abundances is similar for sites with

different contributions to protein stability, such as surface sites

and sites in protein cores (Yang et al. 2012). Moreover, in-

creasing protein stability beyond a certain threshold is not

evolutionary advantageous, and may be generally detrimental

to fitness, as demonstrated by multiple known examples of

stability–activity trade-offs in proteins (Wang et al. 2002;

Tokuriki et al. 2008; Knies et al. 2017). If effects associated

with misfolding become harmful, for example, due to signif-

icantly increased burden of transcriptional (Goldsmith and

Tawfik 2009) or translational (Bratulic et al. 2015) errors, pro-

teins are quickly stabilized by fixation of several mutations

(Goldsmith and Tawfik 2009; Bratulic et al. 2015) without

substantial further constraints on the corresponding protein

sequence.

Across the E. coli and H. sapiens data sets we analyzed,

TAgg
m correlates better with protein abundances, whereas evo-

lutionary rates correlate more strongly with mRNA abundan-

ces (fig. 2). Moreover, there is very little mRNA-independent,

that is, protein-specific, contribution to the correlations with

evolutionary rates. This provides another strong argument

against the MAH which predicts that protein misfolding and

therefore protein abundance should be the main driver of the

varaibility of evolutionary constraints. For the entire H. sapiens

proteome, Spearman’s correlation between mRNA abun-

dance (Mele et al. 2015) and evolutionary rate is 0.44, while

the correlation between protein abundance (Wang et al.

2015) and evolutionary rate is 0.26. Based on partial correla-

tions, protein abundance explains ~1% extra variance of evo-

lutionary rates in addition to mRNA abundance; similarly, in

E. coli the independent contribution of protein abundance to

the variance of evolutionary rates is ~5%. These results pro-

vide further evidence that different biological mechanisms

may be driving constraints related to protein aggregation

and misinteractions and those responsible for the substantial

variability of protein evolutionary rates.

Direct experimental measurements demonstrated that del-

eterious mutations reduce fitness primarily due to changes in

protein function, rather than due to destabilization-induced

changes in protein abundance (Firnberg et al. 2014).

Analyzing long-term protein evolution, we also recently

showed that functional optimality, that is, the conservation

of protein sequence and 3D structure necessary for efficient

protein function, is a substantially stronger evolutionary con-

straint than the requirement to simply maintain folded protein

stability (Konate et al. 2019). Recently, the fraction of muta-

tions leading to deleterious effects through all possible non-

functional mechanisms, referred to as collateral effects, was

estimated to be approximately 40% for the TEM-1 protein in

E. coli (Mehlhoff et al. 2020). This result also suggests that

collateral effects are unlikely to dominate protein evolutionary

constraints, at least for the vast majority of bacterial proteins.

Based on the ratio of amino acid changing to synonymous

substitutions in bacteria, Ka=Ks � 0.05–0.1 (Koonin 2012),

the fraction of bacterial amino acid changing mutations that

are rejected in evolution is approximately 0.9–0.95. Therefore,

functional effects play a larger role in purifying selection even

under the assumption that collateral (non-functional) mecha-

nisms dominate functional mechanisms for all mutations with

non-zero collateral effects. And this assumption is quite un-

likely as protein sites of collateral mutations substantially over-

lap with functionally sensitive sites, and collateral effects are

often smaller in magnitude compared with functional effects

(Stiffler et al. 2015; Mehlhoff et al. 2020). All these results

suggest that the diversity of protein evolutionary rates may be

more related to functional effects of substitutions rather than

effects associated with protein stability. Evolutionary models

and corresponding computational simulations (Cherry 2010;

Gout et al. 2010) also demonstrated the plausibility that func-

tional optimization, which allows cells to minimize the cost of

gratuitous protein expression, may be responsible for higher

level of sequence constraints of abundant proteins.

Different models of protein sequence evolution empha-

sized different costs of protein production. Therefore, the pri-

mary origin of protein expression costs is another important

evolutionary question related to the MAH. In the original

MAH hypothesis this cost was proposed to arise from protein

misfolding induced by translational errors (Drummond et al.

2005; Drummond and Wilke 2008), and this cost was later

extended to error-free misfolding (Yang et al. 2010). We note

that several previous experimental studies did not find sub-

stantial costs associated with protein misfolding (Plata et al.

2010; Kafri et al. 2016). By overexpressing pairs of close yeast

duplicates, evolving at different rates, a recent study by

Biesiadecka et al. (2020) also did not find any evidence of

substantial contribution of costs associated with translation-

induced misfolding. Although the study by Geiler-Samerotte

et al. (2011) is often viewed as supporting a major role of the

MAH (Zhang and Yang 2015), the critical analysis of the

results reported in that study also suggest a smaller cost of

translation-induced misfolding compared with other costs as-

sociated with protein production. Specifically, Geiler-

Samerotte et al. showed that the gratuitous overexpression

of a protein with multiple destabilizing substitutions leads to

deleterious fitness effects which are approximately three

times higher than the expression cost of the wild-type protein.

However, mistranslation errors are present in only approxi-

mately 15% of proteins (Drummond and Wilke 2008; Yang

et al. 2010), and even a smaller fraction of proteins contains

multiple translation-induced mutations or mutations with

substantial destabilizing effects (e.g., only �20% of muta-

tions have DDG0 < �2 kcal/mol) (Nisthal et al. 2019).

Therefore, the overall cost (per protein) of translation-

induced misfolding is substantially smaller than the cost of
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protein production. The same conclusion can be extended to

error-free misfolding based on the estimate that it contributes

only 5–20% extra misfolding events compared with misfold-

ing arising from translational errors (Yang et al. 2010).

Finally, although the feasibility of a dominant MAH contri-

bution was suggested by computational simulations

(Drummond and Wilke 2008; Yang et al. 2010; Serohijos

et al. 2012), biology is an empirical science, and the fidelity

of proposed hypotheses should be ultimately determined by

their agreement, or lack thereof, with available experimental

data. An obvious weakness of aforementioned simulations is

that they only considered effects associated with protein sta-

bility and interactions. Thus, they demonstrated the MAH fea-

sibility but could not evaluate the relative importance of other

biological and functional effects. While it is often possible to

invoke sophisticated noise and error models to explain the

absence of expected observations (Razban 2019), based on

the preponderance of available evidence the MAH is unlikely

to play any major role in mediating a strong negative corre-

lation between protein abundances and evolutionary rates.

Major roles are also unlikely for several other mechanisms,

such as effects associated with increased protein solubility

or avoidance of nonfunctional interactions (Plata et al.

2010; Yang et al. 2012). Most importantly, the search for

the main factors contributing to the substantial variability of

evolutionary rates across proteins must continue.

Materials and Methods

The protein stability data were obtained from the ProTherm

database (Kumar et al. 2006), which have been recently

moved to the ProtaBank (Wang et al. 2019) and are available

at https://github.com/protabit/protherm-conversion. We con-

sidered unfolding Gibbs free energies, DG0, for wild-type

proteins measured at pH values between 4 and 9, and for

temperatures between 10 and 50 �C. Proteins in all oligomeric

states and with any (un)folding dynamics were used in fig-

ure 1. Only monomers that exhibit two-state reversible

(un)folding were used in supplementary figure 1,

Supplementary Material online. For each protein with more

than one available measurement, the values were averaged

over different experimental conditions and measurements

performed by different research groups. Raw DG0 values

for E. coli and H. sapiens extracted from ProTherm are avail-

able in supplementary table 7, Supplementary Material online.

We used the rate of nonsynonymous substitutions, Ka, as a

measure of protein evolutionary rate. Ka values for E. coli,

H. sapiens, and A. thaliana were calculated using the PAML

package (Yang 1997) relative to Salmonella enterica, Mus

musculus, and Brassica oleracea. Orthologs were identified

as bidirectional best hits in pairwise local alignments calcu-

lated with Usearch (Edgar 2010). We considered for analysis

only protein pairs for which corresponding alignments cov-

ered at least 70% of the shortest protein length.

Protein abundance data for all species were obtained from

the whole-organism integrated data sets available in the

PaxDB v.4 database (Wang et al. 2015). mRNA abundances

data for E. coli were obtained from McClure et al. (2013).

mRNA abundances from the brain frontal cortex (Mele et al.

2015) was used for H. sapiens, as it was demonstrated that

mRNA expression in this tissue has the highest correlation

with protein evolutionary rates (Drummond and Wilke

2008). mRNA abundances from the germinating seed was

used for A. thaliana (Klepikova et al. 2016).

Protein surface nonadhesiveness was obtained from Levy

et al. (2012). Specifically, this measure equals the negative

sum of amino acid stickiness scores (Levy et al. 2012) across

sequence sites located on protein surfaces based on corre-

sponding protein 3D structures (Levy 2010).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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