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By analyzing, in parallel, large literature-derived and high-
throughput experimental datasets we investigate genes harboring
human inherited disease mutations in the context of molecular
interaction networks. Our results demonstrate that network prop-
erties influence the likelihood and phenotypic consequences of
disease mutations. Genes with intermediate connectivities have
the highest probability of harboring germ-line disease mutations,
suggesting that disease genes tend to occupy an intermediate
niche in terms of their physiological and cellular importance. Our
analysis of tissue expression profiles supports this view. We show
that disease mutations are less likely to occur in essential genes
compared with all human genes. Disease genes display significant
functional clustering in the analyzed molecular network. For about
one-third of known disorders with two or more associated genes
we find physical clusters of genes with the same phenotype. These
clusters are likely to represent disorder-specific functional modules
and suggest a framework for identifying yet-undiscovered disease
genes.

computational biology � disease genes � systems biology

The impact of a single-nucleotide substitution can be markedly
different depending on where it occurs in the human genome.

The substitution may lead to no detectable effect if, for example, it
falls within a noncoding sequence or a third codon position of a
gene. When a harmful substitution does affect protein or RNA
function, a continuum of outcomes ranging in phenotypic severity
is possible. In the worst case, the nucleotide change is lethal (the
corresponding gene is often classified as essential), and the organ-
ism dies early in its development. A milder but still observable
phenotypic effect is what we usually call a disease (the correspond-
ing gene is classified as a disease gene): a significant nonlethal
malfunction within the human physiological system. Yet a milder
physiological effect may be invisible in all but rare situations, for
example, the inability to recognize a specific odor. A similar
spectrum exists for the favorable genetic changes, but they are likely
to be rarer and are less studied. Clearly, the strength of phenotypic
consequences of a genetic variation is continuous; the three classes
of phenotypic outcomes outlined above are but products of a
somewhat arbitrary partition of this natural continuum. It is also
true that different mutations within the same gene (for example,
p53) can lead to outcomes spanning the entire phenotypic
spectrum.

It is likely that a gene location within a cellular network may
influence the impact and consequences of a given gene mutation.
Here, we test this hypothesis by analyzing a large collection of
known human disease genes in the context of several human
molecular networks.

Human Interactome Data
Currently available human molecular interaction networks are
neither complete, nor error-free. Nevertheless, several recent stud-
ies generated large datasets approximating the complete human
interactome. In our analysis we used three human protein interac-
tion datasets. One is a large-scale dataset of physical interactions
extracted from hundreds of thousands of full-length scientific

articles by the GeneWays (GW) natural language system (1, 2). The
GW interaction network contains 4,458 human genes and 12,991
physical interactions (such as phosphorylate or bind) between them.
The other two interaction networks were generated by two exper-
imental studies using the yeast two-hybrid (Y2H) technique, one by
Stelzl et al. (3) with 1,693 genes and 3,120 interactions, and the other
by Rual et al. (4) with 1,549 genes and 2,611 interactions. To
improve the statistical power in our analysis we combine the two
Y2H datasets into a joint Y2H network with 2,965 nodes and 5,722
interactions.

We view the Y2H and GW networks as complementary rather
than competing views of the human interactome, much like two
photographs of the same landscape from different viewpoints.
There are likely biases in both types of the networks: for example,
interactions between membrane-bound proteins tend to be under-
detected with two-hybrid screens, whereas the literature-derived
interactions are likely to overrepresent interactions between well
studied proteins (3–9). Although we observe similar trends for both
GW and Y2H datasets, the smaller size of the Y2H network leads
to less statistically significant results compared with the GW
network. Because the total number and types of interactions
discovered by the two-hybrid methods and literature mining are
different, the Y2H and GW networks are not directly comparable
to one another (e.g., in terms of the average network connectivity).

Phenotype Data
In our work we analyze a large compendium of genes harboring
known inherited disease mutations compiled by Jimenez-Sanchez et
al. (10). The set contains 908 disease genes, of which 498 and 144
can be mapped to GW and Y2H networks, respectively. The vast
majority of disease genes in the set are responsible primarily for
monogenic (Mendelian) disorders. Nevertheless, we could clearly
identify 38 and 20 genes associated with polygenic disorders in the
GW and Y2H networks, respectively. The majority of the polygenic
disease genes (76% on GW and 65% on Y2H) are associated with
various forms of cancer. The disease gene set that we analyze is not
complete, and future studies will undoubtedly identify additional
disease genes. Therefore, it is appropriate to view our analysis as an
attempt to estimate from the incomplete data the probability that
a random mutation in a gene with certain network properties would
lead to an inherited disease (as opposed to a lethal or nondisease
phenotype). For comparison, we also analyzed the human orthologs
of essential mouse genes (806 and 298 genes mapped to the GW and
Y2H networks, respectively) from the Mouse Genome Database
(11). We use these orthologs here as an approximation for the set
of essential human genes. The sets of disease and essential genes are
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not mutually exclusive. Some of the disease genes under a complete
knockout produce a lethal phenotype and can be as well charac-
terized as essential. Whether a gene is essential or a disease one is
determined by a particular mutation.

Results and Discussion
Network Properties of Disease Genes. To examine topological net-
work properties of disease genes we first use a number of estab-
lished network statistics, such as node connectivity (degree) and
clustering coefficient. A node’s connectivity is defined as the total
number of edges connecting it with other network nodes (12). We
find that connectivity of polygenic disease genes is significantly
higher than that of other disease genes. The GW (Y2H) average
polygenic and monogenic disease gene connectivities are 38.3 and
6.8 (7.7 and 2.7), respectively (Mann–Whitney’s P � 0.0001 and
0.08, respectively). The observed difference primarily comes from
the highly connected signaling proteins that are responsible for
various forms of cancer.

The average connectivity of disease genes is significantly higher
than that of an average gene in the GW network (disease 9.3, all 5.9,
P � 10�10) and about equal for the Y2H network (disease 3.4, all
3.9, P � 0.28). This difference in the average disease gene connec-
tivities for the two networks could be a consequence of the
knowledge bias (disease genes are, on average, better studied)
present in the GW network. To investigate further the connectivity
distribution of disease genes, we calculate the probability to find a
disease gene occupying a network node with a given connectivity
(see Fig. 1 A and C). Using the same data we also show the binned
distributions, separately for the GW and Y2H networks, in Fig. 1
B and D. For comparison, we plot the probability (fraction for the
bar graphs) of essential genes in the figures. For the lower half of
the connectivity bandwidth in Fig. 1, the mean fractions of both

disease and essential genes increase with the number of interactions
for both the GW and Y2H networks (see also Fig. 1A Inset).
However, for higher connectivities, we can see that the fraction of
essential genes is still high, whereas that of disease genes drops
significantly. We observe a similar behavior for the monogenic
genes, although the rise for low connectivities is not pronounced for
the Y2H network. The relationship between the network connec-
tivity and gene essentiality has been discussed previously. Highly
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Fig. 2. Tissue expression distribution for disease and essential genes. The
tissue expression index (TEI) was calculated for every gene as the fraction of
the 79 tissues analyzed by Su et al. (18) in which the gene was detected as
expressed. The genes with large indexes are expressed in almost all tissues,
whereas the genes with small indexes have a limited expression distribution.
Shown are the fractions for disease and essential genes as the function of
tissue expression index. The error bars represent SEM.

Fig. 1. The probabilities (fractions)
for three gene categories: mono-
genic disease (green), all disease
(blue), and essential (red) as a func-
tion of their network connectivity.
(A) Fit of the probabilistic models to
the GW network data. The curves
represent the maximum-likelihood
model fits to all (nonbinned) data
(see Methods). Separately for mono-
genicandalldiseasegenes, twomod-
els describing the data were tested: a
general model using a bell �-like
function and a uniform null hypoth-
esis model. For essential genes, a ris-
ing �-like function was tested against
a uniform null hypothesis. The log-
likelihood differences between the
models are shown next to the corre-
sponding arrows. The individual data
points representing the fractions of
all disease, monogenic disease, and
essential genes at each connectivity
are shown by green, blue, and red
dots. The data points were collected
to four bins for display purposes only.
For each bin, 99% confidence inter-
vals for theposteriorprobabilitiesare
representedbycoloreddensities. The
color intensity and width of the den-
sities represent the probability val-
ues. (Inset) The data for the first bin.
The error bars represent SEM. (B) A
simpler bar plot of the GW network
data presented in A. The fractions of
all disease genes, monogenic disease genes, and essential genes are shown for different gene connectivity bins. The error bars represent SEM. (C) The same as A for
the Y2H network with fit of the probabilistic models to the Y2H network data. (D) A simpler bar plot of the Y2H network data presented in C. The fractions of all disease
genes, monogenic disease genes, and essential genes are shown for different gene connectivity bins. The error bars represent SEM.
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connected proteins were found to be, on average, more essential
(13), although the relationship between a gene’s essentiality and
connectivity is not deterministic or simple (5, 14). The observation
that nonsomatic disease genes are less likely to be observed in
networks’ hubs (highly connected nodes) suggests the less damaging
nature of disease mutations, likely allowing the organism’s survival.

A natural way to test the robustness of the apparent bell-shaped
probability distribution of disease genes is to design a probabilistic
model incorporating multiple distribution shapes. We can then
rigorously compare different distribution shapes in terms of the fit
quality to the real data (using the likelihood ratio test). Therefore,
we implement two nested parametric models for the observed data:
the simpler model describes a uniform distribution of disease genes
across the connectivity range, whereas the more general one allows
for the distribution to be uniform-like, bell-shaped, or rising (a beta
distribution-like function; see Methods). Applying the models to
real data, we find that the likelihood of the more general bell-
shaped model is much greater than that of the uniform model for
disease genes (P values reflecting the significance of the difference
are 10�5 and 0.002 for the GW and Y2H networks, respectively).
We obtain similar results by using a simpler model [see supporting
information (SI) Appendix] with fewer parameters in which high
statistical significance was observed in all but one case (disease
genes on Y2H network; P � 0.2). It is very likely that the disease
genes more often get in the limelight of scientific studies than other
genes (for example, the focus on disease genes may influence the
subsequent funding of the research project). Although this atten-
tion bias may explain a higher-than-average connectivity of disease
genes in the GW network, it clearly cannot explain the low
probability of finding disease genes at the high-connectivity part of
the distribution (network hubs). In line with previous observations
(13, 15), the likelihood of the rising model is higher than that of the
uniform one for the essential genes (P � 4 � 10�11 and 0.3 for the
GW and Y2H networks, respectively). To investigate the possible
biases associated with selection of candidate disease genes through
functional genomics methods (16), we repeated the analysis by

using disease genes identified through positional cloning and the
Y2H network (see SI Table 1 and SI Appendix); the resulting
distribution is similar to the one obtained for all disease genes (a
bell-shaped curve fit is significantly better than a uniform one
(P � 0.05).

Important cellular complexes and functional modules often
correspond to dense regions in protein interaction networks, i.e.,
nodes with high connectivities and high clustering coefficients.
Clustering coefficient of a node is defined as the ratio between the
observed number of direct connections between the node’s imme-
diate network neighbors to the maximum possible number of such
connections (12). A higher clustering coefficient for a node corre-
sponds to a higher density of network connections around it.
Computing clustering coefficients for both GW and Y2H networks,
we observe that disease genes ‘‘avoid’’ dense-clustering neighbor-
hoods unlike the essential genes. The average clustering coefficient
for highly connected nodes (i.e., nodes likely to represent functional
modules and complexes) for the GW network were 0.11 for disease
and 0.14 for essential genes (P � 0.005) and for the smaller and
sparser Y2H network they were 0.015 for disease and 0.030 for
essential genes (P � 0.7). The nodes with connectivity �6 were used
to represent highly connected network clusters; similar results were
obtained by using other connectivity thresholds (see SI Appendix).

Tissue Expression of Disease Genes. The tendency to escape most
vital cellular components while affecting lesser physiological pro-
cesses appears to be a general property of disease genes. If so, this
property is likely to be observed with completely different descrip-
tors of protein function, such as multitissue expression measure-
ments. It has been shown previously that disease genes have a
significantly narrower range of tissue expression compared with all
genes (17). Here, we analyze the tissue distribution of expression for
disease and essential genes (see Fig. 2), using data from Su et al. (18)
for 79 human tissues. For each gene we calculate the fraction of
human tissues in which it was significantly expressed. Similar to the
network connectivity, genes with intermediate values of the expres-
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Fig. 3. Average network connectivity for disease
genes with different phenotypes. Data are shown sep-
arately for the GW (Left) and Y2H (Right) networks.
Light-gray columns show the average connectivity for
disease genes displaying decrease/no-decrease in life
expectancy. Dark-gray columns show the average con-
nectivity of disease genes with recessive/dominant phe-
notypes. The error bars represent one standard error.
Because the connectivity distributions for each category
are not parametric, we used the Mann–Whitney test
to determine significance of the difference between
categories.

Fig. 4. Physical clustering of disease genes in the GW
network. (A) The red line shows the fraction of all
genes located at a certain network distance or closer.
The shortest path between each gene pair was used to
calculate the network distance. The blue line shows the
fraction of all disease genes located at a certain net-
work distance or closer. (B) Disorder-specific clustering
of disease genes. In the GW network, there are 38
clusters of physically interacting genes associated with
the same disorder. To investigate the significance of
the observed clustering we simulated the distribution
of the physical clusters between genes associated with
the same disorder. The random distribution of clusters
was obtained by reshuffling network edges while pre-
serving the total connectivity of each gene. The reshuf-
fling was repeated 1,000 times to obtain the distribution. The results of the network randomization show that the observed clustering is highly statistically
significant (z score � 7.5). The Gaussian fit to the simulated distribution is shown with a solid red line.
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sion fraction have the highest probability to harbor inherited
disease mutations. The probability of disease genes to occupy the
intermediate (0.4–0.7) range of the expression fractions is signifi-
cantly higher compared with genes with the smaller (0–0.3; P �
0.001) or larger (0.8–1; P � 0.001) ranges. As with connectivity
distributions, to make sure that the tissue expression results are not
caused by the ascertainment biases, we repeat the same analysis
with only positionally cloned disease genes. The resulting distribu-
tions show a similar pattern with a statistically significant peak at the
intermediate expression range (see SI Appendix). It is likely that
genes expressed in a small number of tissues are, on average, less
physiologically important, whereas genes expressed in almost all
tissues are on average too important to allow survival when
damaged. Essential and disease genes again show qualitatively
different behavior. The probabilities of essential genes to have
intermediate and high expression levels are not significantly dif-
ferent from each other (P value close to 1) and are both significantly
higher than the probabilities for essential genes to have a low
expression (P � 0.001). The expression analysis reinforces the view
that the inherited disease-causing mutations have the highest
probability of occurring in genes with intermediate physiological
importance.

Disease Versus Essential Genes. We observe different behaviors for
disease and essential genes in terms of the connectivity and
expression distributions. In this context it is interesting to investigate
whether disease mutations preferentially occur in nonessential
genes. Following this question, we compare the available sets of
disease and essential genes directly by using the �2 test. The two sets
are significantly different when using (as we do throughout this
study) the human orthologs of mouse essential genes as the set of
essential human genes (P � 10�12). To check this result for possible
ascertainment biases in the selection of mouse essential genes, we
also repeat the test by using human orthologs of essential Caeno-
rhabditis elegans genes identified in a systematic all-genome RNAi
screen (19). We again observe that the two sets are highly signif-
icantly different (P � 10�4) (see SI Appendix for details). Conse-
quently, disease mutations do have a lower probability of occurring
in essential genes.

Severity of Mutation Outcome and Network Topology. It was dem-
onstrated previously that the molecular function of a disease gene
affects its mode of inheritance (20). If the network connectivity
affects the likelihood of a mutation to cause a disease phenotype,

Fig. 5. Genes and proteins harboring variation causing the same disease phenotype tend to form directly (physically) connected clusters. Physical-interaction gene
clusters associated with 38 disease phenotypes are shown. Gene and phenotype names are indicated for each cluster. The phenotype numbers and cluster colors serve
as the key for Fig. 6.
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it may also influence the severity of the disease outcome. To test this
hypothesis we analyze the phenotypic characteristics of disease
mutations compiled by Jimenez-Sanchez et al. (10). Our results (see
Fig. 3) reveal that genes harboring disease mutations with dominant
phenotype display significantly higher network connectivity com-
pared with genes with recessive phenotype (P � 0.001 for GW; P �
0.13 for Y2H). This result may be a consequence of larger network
perturbations introduced by mutations in highly connected genes.
Moreover, we also observe that mutations reducing life expectancy
reside in more connected genes compared with mutations without
such an effect (P � 0.03 for GW; P � 0.18 for Y2H). Larger
decrease in life expectancy caused by mutations in highly connected
genes again suggests that these mutations are, on average, more
damaging and lead to larger physiological consequences, than
mutations in genes with lower connectivity.

Physical Clustering of Disease Genes. Our work would be incomplete
without an analysis of the relative network distribution of disease
genes. Do they have a higher probability to interact with one
another, or they are spread evenly around the network? Do they
form large connected clusters? Are these clusters distributed ho-
mogeneously across the network? To address these questions, we
focus on the GW network because it includes 460 direct interactions
between disease genes (versus only 9 in the significantly less dense
Y2H network). As an instrument for the analysis of interaction
patterns of disease genes we design two nested probabilistic models.
In the first model disease genes are blind to the type (disease or
nondisease) of the interacting neighbor. In the second model
disease genes preferentially interact with each other; their self-
affinity is described by parameter � (see SI Appendix). We find that
the preferential affinity model describes the data with significantly
higher likelihood (P � 0.001) and suggests that disease genes are
about two times more likely to interact with each other as compared
with nondisease genes (� � 0.20 vs. 0.11). A consequence of this
preferential interaction is a skewed distribution of the shortest
network distances between disease genes (see Fig. 4A): 8.0% of the
disease genes are located within network distance 2, compared with
average 3.7% for the whole network.

In the GW network disease genes form a large connected cluster
of 271 nodes and several smaller clusters (2 of size 3 and 14 of size
2), and 192 genes are not connected to other disease genes. The
observed large cluster does not group genes functionally (because
it contains genes from many unrelated diseases), but indicates that
complex phenotypes are entangled genetically. The formation of
such a cluster could be a consequence of the existence of a giant
connected component in a densely connected network (12).

We are particularly interested in physical-interaction clustering
of same-phenotype genes: our dataset contains 128 groups of two
or more genes associated with the same phenotype (such as breast
cancer, Waardenburg’s syndrome, and retinitis pigmentosa; see
Figs. 5 and 6 and SI Appendix). This disease-focused clustering is
different from gene clustering into broader physiological categories,
such as developmental, nervous system, and metabolic, demon-
strated by Gandhi et al. (5). We observe 38 connected clusters (of
size 2 and larger) of genes associated with the same disorder (see
Fig. 5). We evaluate the statistical significance of such clustering
by randomly shuffling protein interactions in the GW network

Fig. 6. Genes and proteins harboring variation causing the same disease
phenotype tend to form directly (physically) connected clusters (continued
from Fig. 5). (A) A visualization of the same 38 phenotypic gene clusters as
shown in Fig. 5 within the GW molecular interaction network. Genes associ-
ated with the same phenotype are indicated by the same-color semitranspar-
ent spheres. Note that several genes within the network are known to affect
multiple phenotypes (network nodes with multicolor stripes). The blue cubes
represent essential genes and provide additional network context. (B) A
detailed view of gene connectivity distribution (compare with Fig. 1 A and B)
in the GW network. Disease (red and yellow spheres), essential (blue cubes),
and other (white dots) genes are placed along concentric circles that represent
gene connectivity layers within the molecular network. In our GW network
the connectivity covers range between 1 (the outermost circle) and 340 (the
center). We can see that the intermediate connectivity range contains a higher
proportion of disease genes participating in physical clustering (red spheres)

than the disease genes that do not (yellow spheres). Subplots (A and C) focus
exclusively on the subset of disease genes that have within-phenotype
physical-interaction clustering. (C) The overlaps and physical interactions
between gene clusters linked to 38 disease phenotypes. Each node represents
a whole disease cluster of the same color and number as used in Fig. 5. Two
nodes are connected by a red edge when there is at least one direct physical
interaction that links two genes from the two distinct phenotypic clusters
represented by the graph nodes. Two nodes are connected by a green edge
when their corresponding disease clusters share at least one gene.
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while maintaining the total connectivity of each protein. The
results of such randomization (see Fig. 4B) demonstrate that the
observed clustering is highly statistically significant (z score � 7.5;
P � 3.2 � 10�14).

Importantly, about one-third of all studied disorders (38 of 128)
with two or more associated genes show significant clustering in the
interaction network. Of all phenotypes that we consider here, 8 of
30 (27%) of non-Mendelian and 30 of 99 (30%) of Mendelian ones
map to sets of genes that form physical clusters. On the gene level,
22% (108 of 497) of all disease genes cluster with other genes
responsible for the same disorder. In Figs. 5 and 6 we show
disorder-specific gene clusters mapped onto the GW network.

In Fig. 5 we display all disorders with multiple associated genes
forming physical connections (38 clusters). Fig. 6A shows the
connections between multiple genes associated with the same
disorder in the context of the GW network. Several genes within the
network affect multiple phenotypes (shown with multicolor stripes
in Fig. 6A), and genes responsible for different phenotypes often
form connections. To highlight the connectivity distribution of
genes participating in physical clusters we show them separately
(Fig. 6B, red) from the rest of the disease gene (Fig. 6B, yellow). The
genes with intermediate connectivity range contain a higher frac-
tion of the clustering genes. To explore the connections between
various phenotypes with multiple associated genes we show depen-
dencies between phenotypes in Fig. 6C. In Fig. 6C each sphere
represents one phenotypic cluster and the connections between
phenotypes represent either shared genes (green edges) or physical
interaction between genes from different phenotypes (red edges).
Curiously, in the GW network 25 of 38 multigene phenotypic
clusters form connections to other clusters.

If current estimates of the total size of the human interactome
(21, 22) are correct, we analyzed at best 5–10% of all possible
interactions between human proteins. It is therefore quite remark-
able that we observe a high level of disease gene clustering despite
a very limited knowledge of the human interactome. The observed
physical clustering reflects functional similarity between genes
associated with the same diseases; only about one-third of the
functional clusters represent molecular complexes. As our knowl-
edge of the human interactome expands, it is likely that the
functional clusters responsible for specific diseases will grow and
new clusters will emerge. The clustering of the disease genes in the
interaction network is likely to be complemented by clustering of
other functional categories, such as expression and subcellular
localization. Analysis of such disease clusters and nearby genes is
critically important as a guiding framework for identifying new
disease genes (23, 24).

Methods
To compare the alternative interpretations of data, we designed three nested
probabilistic models describing stochastic correspondence between the gene

connectivity, c, and the number of (disease or essential) genes, dc, with given
connectivity. Let Nc be the total number of genes with connectivity c. In our
description both dc and dc/Nc are random variables that follow different distri-
butions for different values of c.

Weassumethatthemeanvalueofdc/Nc ineachconnectivitybin,yc �E(dc/Nc�c),
is deterministically defined by a �-function with parameters a, b, k, and �:

yc � E�dc

Nc
�C � c, a, b, k, �� � kc�a�1��� � c��b�1�. [1]

Further, we assume in all three models that given the value of y in the cth
connectivity bin, yc, the observed value of dc follows a scaled �-distribution:

P�Dc � dc�Nc, �c, �c� � �Nc

dc
� B��c � dc,�c � Nc � dc�

B��c,�c�
. [2]

where B(x, y) represents a two-parameter �-function, where of two parameters
�c and �c only one is free because of the constraint on the mean value of dc,
E((dc/Nc)�c) � yc:

�c �
�1 � yc�yc

2

	c
� yc,

�c �
1 � yc

yc
�c,

[3]

where [	c]2 represents the variance of yc.

log L � �
c

log	P�dc�c , 
�� ,


ML �
arg max




	 log L� .
[4]

We can obtain three nested models in the following way. For the general model,
a and b are unconstrained. For the rising curve, b � 1. For uniform distribution,
a � b � 1. Clearly, the rising curve model is nested to the general model, whereas
the uniform distribution is nested to both more parameter-rich models. Then we
can use the standard theory of asymptotic behavior of the maximum-likelihood
values to assess the significance of difference in quality of fit to data of the
alternative models.

Note Added in Proof. After this article was submitted to PNAS, we learned
about a similar study by Goh et al. (25) that was submitted to PNAS at the same
time as our work.
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