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As genomic and proteomic databases continue to expand at 
an accelerating rate, the challenge to accurately annotate 
gene functions grows in scale and importance. Homology-

based methods are now routinely used to annotate protein func-
tion in sequenced genomes1–3. Unfortunately, homology methods 
generate a large number of misannotations due to a relatively  
high sequence identity (>40–60%) required for an accurate func-
tional transfer. Sequence-based misannotations can also quickly 
spread through functional databases based on homology to misan-
notated genes4–6.

Several ontology-based algorithms have been previously devel-
oped to detect potential misannotations. The system Xanthippe7 
was used to detect inconsistencies between functional keywords 
and annotated protein domains. Errors in protein motif (PROSITE  
patterns) assignments8 were identified by comparing Gene Ontology 
(GO9) and Swiss-Prot10 annotations. Ambiguous and incomplete 
Enzyme Commission (EC) numbers were identified and shown to 
result in erroneous functional assignments11.

Context genomic correlations such as chromosomal gene 
clustering12–14, phylogenetic profiles15,16 and gene fusion17–19 can 
provide functional clues even if sequence homology informa-
tion is remote or absent. We rationalized that the context-based 
correlations can be used not only to predict gene function, but 
also to efficiently detect inaccurate annotations. In this paper 
we develop such a method and demonstrate its ability to iden-
tify suspicious functional assignments. In contrast to aforemen-
tioned methods, our approach is not based on inconsistencies 
between several annotations, but rather between annotations 
and multiple genomic correlations. Therefore, the developed 
method is able to automatically detect incorrect functional 
assignments even if only a single annotation is available, or if 
annotations from several sources are in agreement. Our method 
can be also used to select the correct assignment among conflict-
ing annotations. In the paper we first demonstrate the power of 
the method using artificial errors generated in silico, and then 
apply the algorithm to detect misannotations in the B. subtilis 
metabolic network.

RESULTS
Strategy of the computational approach
The algorithm presented in this study identifies genes that have either 
unusually poor genomic correlations with their network neighbors, 
or alternative network locations with significantly better correla-
tions. The problems of assigning the correct function and iden-
tification of misannotations have different objectives and require 
different algorithms. In many cases, it is possible to reject an existing  
annotation based on poor genomic correlations, while these corre
lations are not strong or unique enough to accurately predict the 
correct function.

Similar to our previous studies20–22, we represent the metabolic 
network as a graph with nodes being metabolic genes and edges 
being connections established by shared metabolites (see Methods). 
Suppose two genes X and Y in different organisms are annotated to 
catalyze the metabolic activity specified by the EC number 1.2.3.4 
(Fig. 1). The developed approach will suggest that the annotation 
of the gene X is likely to be correct due to strong context-based  
correlations with neighboring genes. On the other hand, the gene Y 
displays poor genomic correlations to its network neighbors, and its 
annotation is likely to be an error.

To predict potential misannotations, we integrated sequence 
and context correlations using the AdaBoost algorithm with alter-
nating decision trees23,24. AdaBoost has been successfully applied to 
several large-scale integration problems in biology, including pre-
diction of gene regulatory response25 and identification of genes 
responsible for orphan metabolic activities26. The AdaBoost algo-
rithm was trained with a collection of context genomic descriptors: 
phylogenetic profiles, mRNA co-expression, chromosomal distance 
between genes, gene clustering across genomes and protein fusion. 
For each descriptor, we considered two different scores: the 
largest pair-wise correlation between the target gene and its direct 
network neighbors and the average fitness score in the assigned  
network location calculated as described in the Methods.

The average fitness score quantifies the overall context correla-
tions of the target gene with all its network neighbors20,22. To represent 
the relative fitness of the existing annotation, the AdaBoost score for 
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the best alternative location was also supplied to the algorithm. The 
highest sequence identity to a Swiss-Prot protein known to catalyze 
the assigned metabolic activity in another organism was used as the 
single sequence-based descriptor.

Importantly, the presented approach does not assume a one-to-one  
relationship between a gene and its function (network location). In 
cases where a gene is annotated with multiple enzymatic functions, 
the method calculates, one by one, the likelihoods of each annota-
tion. Only annotations with the likelihood below a certain optimized 
threshold are marked as potential misannotations. Consequently, 
multiple annotations are allowed for each gene, as long as they all 
have good genomic correlations in the assigned network locations.

Method training and optimization
We used the Saccharomyces cerevisiae metabolic model iLL672  
(ref. 27) to train and benchmark the algorithm. The well-curated 
yeast network allowed us to optimize parameters and evaluate 
the prediction accuracy using cross-validation. Because the yeast 
metabolism is relatively well known, we assumed that the vast 
majority of the network functional assignments are correct—that is, 
they represent true positives (TPs). To simulate true negative (TN) 
examples, we artificially generated incorrect functional assignments 
using the three different methods described below. We calculated 
the ROC curves by sorting the annotations based on their classifi-
cation scores; annotations with the lowest classification scores are 
more likely to represent true misannotations.

In the first method (TN1), we randomly assigned new meta-
bolic functions to a large fraction (33%) of network genes. The 
AdaBoost classifier was then trained using TN1 and TP exam-
ples (see Methods). The resulting ROC curve for the 50/50 
cross-validation is shown in Figure 2a. Owing to the random 
nature of the functional reassignments, the TN1 examples rarely 
have high sequence identities to the newly assigned functions. 
Consequently, the algorithm relied primarily on the sequence 
identity and easily identified the misannotations.

In the second method (TN2), to simulate misannotations due 
to a residual sequence homology to non-native metabolic activi-
ties, genes were only reassigned to incorrect activities for which 
they had >30% sequence identity. A random choice was made if 
several reassignments were possible for a gene. The classification 
algorithm was then independently trained using TN2 examples  
(Fig. 2a). The mean area under the ROC curve for the TN2 set, 
based on four independent reassignment experiments, was 0.93 
(95% CI: 0.90–0.95). In spite of the large fraction (40%) of misan-
notations in the reassigned network, the algorithm identified about 
90% of true misannotations, with only 20% of correct annotations 
misclassified as misannotations.

Finally, in the third method (TN3), the genes were reassigned 
only if they had similar (within 10%) or even higher sequence 
identities to the newly assigned (incorrect) activities. This test 
simulated misannotations that are especially difficult to detect 
using sequence homology. In total, 26% of the network genes 
were reassigned using the third method. The mean area under 
the ROC curve for the TN3 examples (Fig. 2a), based on four 
independent reassignment runs, was 0.87 (95% CI: 0.86–0.88). 
The algorithm identified about 80% of misannotations while 
misclassifying 20% of correct annotations. Because many meta-
bolic assignments in existing databases have been made based 
primarily on sequence homology, it is likely that the errors sim-
ulated using the second and the third methods dominate real 
world misannotations.

To understand the transferability of our approach to other 
species, we repeated the analysis using the curated Escherichia coli 
metabolic model iJR904 (ref. 28). The negative examples TN2 and 
TN3 for the bacterial metabolic model were generated in the same 
way as for the yeast network. The classifiers optimized for the yeast 
network were directly applied to the bacterial model without further 
modification or optimization. The resulting performance for the  
E. coli network was similar to that for S. cerevisiae (Supplementary 
Fig. 1). Consequently, the optimized method is able to detect mis-
annotations in different species. The policing approach should also 
be quite effective in non-model organisms because the context cor-
relations, with the exception of co-expression, can be calculated 
directly from genomic sequences; the decrease in sensitivity with-
out expression information was less than 3% (at 25% false positive 
rate). The accuracy of other context correlations will only improve 
as more genomes are sequenced.

Potential misannotations in B. subtilis metabolic network
To test our algorithm on a less-studied network, we applied it to 
the model Gram-positive bacterium B. subtilis. We investigated the 
B. subtilis metabolic annotations available in KEGG29 (655 genes), 
Swiss-Prot10 (528 genes) and MetaCyc30 (369 genes). The different 
number of annotated genes in these databases is a consequence 
of different annotation strategies. While some databases strive for 
maximum coverage, others focus on the most accurate annotations. 
There are 277 B. subtilis annotations shared by all three databases 
and an additional 122, 10 and 20 unique annotations in KEGG, 
MetaCyc and Swiss-Prot, respectively. We applied the developed 
algorithm to all B. subtilis metabolic assignments in the three data-
bases using the parameters optimized for the TN3 yeast examples. 
The cumulative distributions of the AdaBoost classification scores 
for B. subtilis annotations (Fig. 2b) show that the metabolic assign-
ments shared by all databases (red curve) are on average more accu-
rate compared to annotations present exclusively in a single database 
(black curve, Kolmogorov-Smirnov test P = 2 × 10−19). Nevertheless, 
the database-unique annotations display, on average, significantly 
better scores compared to the scores of misannotated genes (TN3 
yeast examples, blue curve, P = 2 × 10−4). This demonstrates that 
it is not possible to detect potential misannotations simply by  
identifying database-unique functional assignments.
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Figure 1 | Illustration of the developed approach. In the figure, network 
nodes represent metabolic genes and edges represent connections 
established by shared metabolites. Using sequence homology, genes X  
and Y from different organisms have been assigned to EC 1.2.3.4. Gene X  
displays strong context-based correlations (darker blue indicating 
stronger correlations) with neighboring network genes. Consequently, the 
annotation of X is likely to be correct. In contrast, gene Y does not fit well in 
the assigned network position and is likely to be misannotated.
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Based on the ROC characteristics (Fig. 2a), the most efficient part 
of the TN3 curve allows identification of 70% of misannotations, 
while classifying only about 5% of correct assignments as misanno-
tations. Considering the total number of analyzed B. subtilis meta-
bolic assignments (679) and assuming that about 10% of the database 
assignments are misannotations4,5, the red point in Figure 2a corre-
sponds to the analysis of 80 genes with the worst classification scores; 
about half of these genes should represent true misannotations. 
Indeed, we manually analyzed the list of 80 genes with the worst 
classification scores, and for 34 cases we either found counterevidence 
or could not identify any experimental study supporting the annota-
tions (Table 1). Although the potential misannotations usually have  
weak sequence homology (usually <40% identity) to known enzymes, 
the classifier is not simply relying on homology to identify misan-
notations. For about 35% of the annotations with good classification 
scores, sequence identity was also weak (<40%), but these metabolic 
assignments are supported by good context-based correlations.

For each potential misannotation, we show in Table 1 the gene 
name, annotation source, the highest sequence identity to enzymes 
responsible for the annotated activity in other species, the relative 
strength of various context-based correlations and the existence of 
good alternative network locations (see Supplementary Methods). 
In the table the context correlation values are represented by their 
relative percentile ranks based on the average fitness scores (see 
Methods). For example, the “expression profile” rank of 10% indi-
cates that the target gene has better co-expression scores in 10% of 
all possible network locations compared to the location assigned in 
the database. Overall, the results in Table 1 suggest that Swiss-Prot 
and MetaCyc are more conservative in their functional assignments 
compared to KEGG, which has the largest number of annotations 
and potential misannotations. We want to emphasize that the major-
ity of KEGG-unique annotations displayed good confidence scores, 
indicating that only a fraction of them are likely to be incorrect.

The B. subtilis gene dgkA is a typical example of a potential 
misannotation. The gene is annotated in all considered databases 
as “diacylglycerol kinase” (DagK, EC 2.7.1.107), possibly based on 

weak sequence homology. However, dgkA has poor context-based 
correlations with the network neighbors of the EC 2.7.1.107 activity 
(Table 1). In a recent study31, the authors confirmed that dgkA is not 
a diacylglycerol kinase but rather an undecaprenol kinase. Another 
example is the B. subtilis gene ywrD, which is annotated in KEGG 
as an ortholog of the -glutamyltransferase (EC 2.3.2.2). Weak 
context-based correlations (Table 1) with neighboring network 
genes suggest that ywrD is unlikely to catalyze the EC 2.3.2.2 func-
tion. The -glutamyltransferase activity (EC 2.3.2.2) is required for 
growth on extracellular glutamyl compounds, such as glutathione 
(GSH, 1), as the source of sulfur. However, a ywrD-null mutant was 
demonstrated32 to grow well on minimal medium with GSH as the 
sole sulfur source. In addition, histidine tag–purified ywrD could 
not hydrolyze GSH. These findings strongly suggest that ywrD does 
not encode a -glutamyltransferase. Further analysis of each case in 
Table 1 is presented in Supplementary Table 1.

Leucine degradation pathway in B. subtilis
The developed method can be used to identify suspicious func-
tional assignments for several genes in a pathway. An example is 
the yngJIHGFE gene cluster in B. subtilis (Fig. 3a). The yngJ gene is 
listed in KEGG as a hypothetical protein, yngI is listed as acyl-CoA 
synthetase (EC 2.3.1.86) (until recently it was listed as long-chain 
fatty acid-CoA ligase, EC 6.2.1.3), yngH is listed as the acetyl-CoA 
carboxylase biotin carboxylase subunit (EC 6.4.1.2/6.3.4.14), yngG 
is listed as hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4), yngF is 
listed as enoyl-CoA hydratase (EC 4.2.1.17) and yngE is listed as 
propionyl-CoA carboxylase  chain (EC 6.4.1.3). In MetaCyc, 
yngE is listed as similar to propionyl-CoA carboxylase and yngF 
is listed as enoyl-CoA hydratase (EC 4.2.1.17). In Swiss-Prot, yngJ 
is listed as probable acyl-CoA dehydrogenase (EC 1.3.99), yngH is 
listed as biotin carboxylase 2 (EC 6.3.4.14/6.4.1.2), yngG is listed as 
hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4) and yngF is listed as 
putative enoyl-CoA hydratase/isomerase.

Our algorithm predicted as potential misannotations the assign-
ments of the EC 6.4.1.3 function to yngE, EC 4.2.1.17 to yngF and 
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Figure 2 | Performance of the developed method. (a) The ROC curves for different types of artificially generated misannotations in the yeast network.  
The true negative set 1 (TN1) was generated by randomly assigning incorrect metabolic functions to a fraction of network genes. The TN2 set was generated 
by reassigning network genes to new metabolic activities only if they had at least 30% sequence identities to newly assigned (incorrect) activities. The TN3 
was generated by assigning genes to new activities only if they had similar (within 10%) or higher sequence identities to the reassigned (incorrect) activities. 
In all cases the remaining (not reassigned) activities were used as true positive examples. For realistic misannotation models, simulated by the sets TN2 and 
TN3, the method correctly identifies about 70–90% of misannotations at a 5–15% false positive rate. The red dot in the figure approximately corresponds to 
70% true positives and 5% false positives. (b) The cumulative distributions of the classification scores for B. subtilis metabolic assignments. The B. subtilis 
annotations made simultaneously by all analyzed databases (KEGG, MetaCyc and Swiss-Prot) are shown in red; annotations unique to KEGG, MetaCyc or 
Swiss-Prot are shown in black. For comparison we also show the true negative set TN3 from S. cerevisiae in blue. The cumulative distributions demonstrate 
that the consensus annotations (red) are, on average, more accurate than the ones unique to individual databases (blue, Kolmogorov-Smirnov test  
P = 2 × 10−19). However, on average, database-specific annotations still score significantly better than true misannotations (KS P = 2 × 10−4).

http://www.nature.com/doifinder/10.1038/nchembio.266
http://www.nature.com/nchembio/journal/vaop/ncurrent/compound/nchembio.266_comp1.html


©
20

09
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

4 	 nature chemical biology | Advance online publication | www.nature.com/naturechemicalbiology

article Nature chemical biology doi: 10.1038/nchembio.266

EC 6.2.1.3 to yngI. These genes have considerably better genomic 
correlations in different network locations (functions): yngE in EC 
6.4.1.4, yngF in EC 4.2.1.18 and yngI in EC 6.2.1.16. Overall, the yng 
genes form the consecutive reactions in the leucine (2) degradation 
pathway33. Based on the predicted functional assignments, we can also 
suggest the likely functions for yngJ (EC 1.3.99.10) and yngH (EC 6.4.1.4 
subunit, forming the enzyme complex with yngE). Consequently, the 
yng cluster is likely to form a complete degradation pathway from 
3-methylbutanoyl-CoA (3) to acetoacetyl-CoA (4), which can be 
further catabolized through the bacterial citric acid cycle.

What is the biological role of the leucine degradation pathway in 
B. subtilis? In early stages of sporulation, B. subtilis cells divide into 
two unequal compartments. The smaller compartment develops 
into a bacterial spore, and the larger compartment forms the mother 
cell, which protects and nurtures the spore until the spore is fully 

developed. Notably, the yng genes are under transcriptional control 
of the E factor and are primarily expressed early in the mother cell 
during sporulation34—that is, when extracellular nutrients are limited. 
The expression of the gene mmgA, which is responsible for the last step 
of leucine catabolism—acetoacetyl-CoA to acetyl-CoA (5) conversion 
(EC 2.3.1.9; see Fig. 3a)—is also controlled by the E factor.

Owing to the structure of its citric acid cycle, B. subtilis cannot 
grow on leucine as the sole carbon source35. Nevertheless, the cata
bolism of the leucine and fatty acids through the citric acid cycle can 
provide additional energy during early sporulation stages. The selec-
tion of the energy source becomes logical if one considers the mem-
brane and amino acid composition of B. subtilis. Leucine is one of 
the most abundant amino acids in logarithmically growing B. subtilis  
cells36; it is responsible for about 8–10% of all protein residues 
(see also Supplementary Fig. 2). In addition, B. subtilis lipids are 

Table 1 | Potential misannotations in the B. subtilis metabolic network

Gene name
Annotated function 

(EC number)
Homology 

score

Phylogenetic 
profile rank 

(%)

Expression 
profile rank 

(%)

Clustering 
profile rank 

(%)
Gene distance 

rank (%) Protein fusion?

Significantly 
better alternative 

location?

adhB 1.1.1.284 (K) 40.7/3E–74 90 90 91 83 N Y

alaT 2.6.1.17 (K) 48.5/3E–98 58 23 28 72 N Y

bcsA 2.3.1.74 (K, S, M) 29.7/1E–04 74 79 73 84 N Y

bsaA 1.11.1.9 (K, S, M) 55/2E–51 47 57 55 52 N Y

Cad 4.1.1.18 (M) 22.8/2E–14 45 80 60 84 N Y

dgkA 2.7.1.107 (K, S, M) 32.3/2E–11 64 21 55 81 N N

hipO 3.5.1.32 (K, M) 35.9/6E–59 45 64 54 8 N N

Pps 2.7.9.2 (K, M) 43.5/0.002 44 38 71 30 N Y

xpt 2.4.2.7 (M) 29.2/5E–07 4 1 7 12 N N

ybbD 3.2.1.52 (K) 34.2/1E–27 49 1 54 36 N N

ycgT 1.8.1.9 (K) 29.8/2E–25 50 21 33 16 N N

yhcV 1.1.1.205 (K) 37/0.002 22 68 44 46 Y N

yhdR 2.6.1.1 (K) 30.1/3E–30 2 1 9 25 N Y

yhfR 5.4.2.1 (K) 38.3/1E–12 22 65 22 17 N N

yisP 2.5.1.32 (K) 27.8/8E–24 87 49 60 73 N Y

yitC 3.1.3.71 (K, S) 38.7/4E–18 87 42 72 10 N N

yjmC 1.1.1.37 (K) 39.8/2E–60 68 30 48 37 N Y

yktC 3.1.3.25 (K,S) 38.1/2E–28 73 49 49 61 N N

ykuR 3.5.1.47 (K) 35.6/3E–43 75 70 50 79 N Y

yngE 6.4.1.3 (K) 40.1/8E–92 1 4 2 12 Y Y

yngF 4.2.1.17 (K, M) 38.9/5E–39 1 2 2 14 Y Y

yngI 6.2.1.3 (K) 31/6E–63 1 10 56 31 Y Y

yoaD 1.1.1.95 (K) 33.8/1E–39 1 1 24 74 N Y

yogA 1.1.1.1 (K) 29.7/2E–21 39 81 71 30 N Y

yqhT 3.4.11.9 (K) 34.9/4E–22 50 54 11 78 N Y

yrhE 1.2.1.2 (K) 37.5/1E–129 2 60 58 51 Y Y

ysfC 1.1.3.15 (K) 27.3/4E–10 55 66 76 34 N Y

yumB 1.6.99.3 (K) 26.6/3E–25 1 18 26 18 N Y

yumC 1.8.1.9 (K) 29.3/1E–21 81 32 35 52 N Y

yvcN 2.3.1.5 (K) 28.6/6E–13 78 36 77 78 N N

yvcT 1.1.1.215 (K, S) 47.3/8E–79 53 59 47 49 N Y

ywrD 2.3.2.2 (K) 31.4/9E–55 25 85 43 27 N N

The data in the table are based on annotations available in February 2009. Annotation source: K, KEGG; M, MetaCyc; S, Swiss-Prot. Homology score is the highest protein-protein sequence identity to 
another Swiss-Prot protein with the target activity; the corresponding BLAST E-value is also shown. The context genomic correlations are represented as the relative percentile ranks. For example, the 
“expression profile” rank of 20% indicates that the target gene has better co-expression values in 20% of all other possible network locations compared to the location assigned in the database. Lower 
percentile ranks indicate better consistencies with genomic context correlations. For the protein fusion, “Y” (“N”) indicates that fusion events between an ortholog of the candidate gene and a network 
neighbor were detected (not detected). The presence of a significantly better alternative location (“Y”/“N”) was determined by the ALR ratio as described in Supplementary Methods.
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predominantly (>90%) composed of branched chain fatty acids35,37; 
odd-iso fatty acids can be oxidized to 3-methylbutanoyl-CoA. 
Sequence identity of yngI to EC 6.2.1.3 (31%) and yngJ to EC 1.3.99.2 
(48%) suggests that these genes may also directly participate in the 
fatty acid degradation pathway. It is likely that during sporulation, 
branched chain fatty acids and amino acids are present in the extra-
cellular media due to the bacterial cannibalism process38,39, which 
allows a fraction of B. subtilis cells to kill their nonsporulating 
siblings and feed on the released nutrients.

To experimentally investigate the role of the yng cluster during 
sporulation, we used 13C labeling experiments. First, we analyzed 
B.  subtilis 168 cells in nonsporulating minimal medium supple-
mented with [U-13C]L-leucine (see Methods). Because the degradation 
pathway leads from leucine to acetyl-CoA (Fig. 3a), we measured 
the fractional labeling of the acetyl-CoA m2 mass isotopomer using 
LC-MS/MS (see Methods) and calculated the fraction of acetyl-CoA 
originating directly from leucine. No 13C labeling above the natural 
abundance of the m2 isotopomer (8%) was detected in cells during 
vegetative growth. This result confirmed that the leucine degradation 
pathway is not active during favorable environmental conditions34.

Next, we investigated the activity of the leucine pathway during 
sporulation. It was previously shown that 2.5 h after the start of 
sporulation the activity of E-regulated genes is at the highest34. We 
inoculated bacterial cells into sporulation medium supplemented 
with [U-13C]leucine, and extracted metabolites after 2.5 h. In sporu-
lating cells the fraction of acetyl-CoA derived from leucine was about 
2.5–3 times higher than background, while all yng mutants displayed 
essentially background labeling levels (Fig. 3b). Consequently, the 
yng pathway is indeed active during sporulation.

Several genes from the yng cluster have been assigned in KEGG 
to the isoleucine (6) degradation pathway: yngE as an ortholog of EC 
6.4.1.3, yngF as an ortholog of EC 4.2.1.17. To investigate the possibil-
ity that the yng genes also play a role in the degradation of isoleucine 
to acetyl-CoA, we tested the activity of the isoleucine degradation 
pathway during sporulation. Similar to the leucine experiments, we 
measured the labeling of acetyl-CoA in sporulation conditions sup-
plemented with [U-13C]L-isoleucine. No labeling above background 
was detected (Supplementary Fig. 3). Consequently, the yng genes 
are unlikely to participate in the isoleucine degradation. Although 
B. subtilis can utilize isoleucine and valine (7) as the sole nitrogen 
source40, our experiments demonstrate that either the isoleucine 
pathway is not active during sporulation or its products are not pri-
marily degraded to acetyl-CoA.

DISCUSSION
The main idea of the presented approach is to use functional 
genomic correlations essentially in reverse. Instead of using 
them to assign protein function41,42, we utilize the correlations to  
predict potential misannotations. The developed method, or similar 
approaches, can be automatically applied to many thousands of 
metabolic assignments in various functional databases. Based on 
this analysis the potential misannotations can be marked with 
corresponding confidence scores. As topologies of protein-protein 
interaction networks are discovered, similar methods can also be 
developed and optimized to identify misannotations in the context 
of molecular interaction networks. Importantly, the developed 
method was not conceived as a criticism of such valuable resources 
as Swiss-Prot, KEGG and MetaCyc. Our results clearly demon-
strate that the majority of annotations in these databases are cor-
rect. Nevertheless, we think that the method can help the existing 
resources to improve the annotation quality and reduce the spread 
of misannotations.

METHODS
Metabolic networks construction. The metabolic networks were constructed using 
known enzymatic reactions for the considered organisms: the iLL672 model27 for 
S. cerevisiae, the iJR904 model28 for E. coli, and B. subtilis metabolic reactions from 
KEGG43, MetaCyc30 and Swiss-Prot10. Only genes with assigned EC numbers were 
considered; activities representing nonmetabolic reactions, such as EC 2.7.11.1 
(nonspecific serine/threonine protein kinase) or EC 2.7.7.6 (RNA polymerase), 
were excluded. Each metabolic network was represented as a graph with nodes as 
metabolic genes and edges as functional connections established by metabolites 
shared between enzymes20–22. The shortest path between a pair of nodes was used 
as the metabolic network distance between the corresponding genes. The 40 most 
connected co-factors and metabolites were not considered in calculating metabolic 
distances22 (Supplementary Table 2).

Context genomic correlations. We used the following context correlations:  
phylogenetic profiles15,16, mRNA co-expression44,45, chromosomal distance, gene  
clustering (chromosomal co-localization across a set of genomes)12,14 and fusion 
of protein domains17,18. The phylogenetic profile correlations were constructed 
using BLASTP searches, using E-value cutoff 10−3, against a collection of 70 evolu-
tionarily distinct genomes22; pair-wise phylogenetic profiles were calculated using 
Pearson’s correlation coefficient. The co-expression values were calculated using 
Spearman’s rank correlation between expression profiles obtained from the Rosetta 
Compendium dataset for S. cerevisiae46, Stanford Microarray Database (SMD) for 
E. coli and the GEO database47 for B. subtilis. The physical distance between genes 
from target genomes was used as chromosomal distance. To calculate the  
chromosomal clustering of genes across genomes, orthology mapping was  
established using the KEGG SSDB database29; the chromosomal clustering  
values were calculated based on a collection of 105 diverse genomes26. A pair of 
genes was considered fused if at least 70% of each protein could be aligned to  
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controlled by the E transcription factor34; the gene mmgA is also under E control and is responsible for the last step of leucine catabolism. (b) Fractional 
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acetyl-CoA isotopomer generated from leucine in sporulating cells only (see Methods). The errors in the figure represent s.e.m. The background  
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nonoverlapping regions of a third protein in the US National Center for 
Biotechnology Information NR database (using BLAST E-value cutoff 10−3). 
Detailed descriptions of the data sources and the methods used to calculate the 
context-based correlations are given in our previous publications22,26.

Context-based fitness functions. We calculated the “fitness” of every gene in its 
assigned network position using the following equation: 

F x
N

w c x yi
y

p

i

R

i

( )
| |

( , ) ( )= ∗
∈=
∑∑1

1
1 Layer 	

(1)

where x is the gene to be tested at the target network position, y is a neighboring 
gene from the ith network Layeri, c(x, y) is a context-based correlation between 
genes x and y, wi is the weight factor for Layeri, and p is the optimized power factor  
for the context-based correlation. The summation in equation (1) is, first, over all 
genes in a given Layeri around the network position of the tested gene and,  
second, over all layers up to the layer R (R = 3 in our calculation). |N| is the  
total number of genes in all considered layers. The parameters for each  
context-based method were optimized using a simulated annealing (SA)  
algorithm48 so that the log sums of the ranks of the correct functions for all  
known metabolic genes were minimized.

Sequence homology information. The sequence homology descriptor of protein 
function was represented as the highest sequence identity to a Swiss-Prot  
protein (using BLAST E-values cutoff 5 × 10−2) annotated to carry out the target  
function excluding genes that are (i) from the query genome or (ii) likely  
annotated based on computational methods—that is, genes with keywords  
‘probable’, ‘like’, ‘by similarity’, ‘hypothetical’ or ‘putative’ in their annotations.

Combining sequence-based and context-based descriptors. All context and 
sequence homology descriptors were combined using the AdaBoost algorithm with 
alternating decision trees (ADTs)23,24. For each classification, the algorithm also 
generates a confidence measure (classification score).

The highest sequence identity to a protein known to catalyze the target 
enzymatic activity in other species was supplied to the classification algorithms 
as the sequence-based descriptor. The context-based descriptors were  
supplied to the classification algorithm as the gene-specific ranks—that is,  
context correlation ranks of the target gene at the annotated location compared 
to all other network positions. For each context descriptor, we consider two 
separate ranks. First, the rank based on the overall fitness of the target gene  
in the annotated location calculated using equation (1). Second, the rank  
based on the largest pairwise correlation of the target gene and its immediate 
network neighbors. For each target gene, we also supplied the classification 
algorithm with two additional AdaBoost scores: (i) the total score for the  
target gene in the annotated location, and (ii) the score in the best alternative 
network location.

Cross-validation. The performance of the method was benchmarked using the 
S. cerevisiae networks using the 50/50 cross validation in which all samples were 
randomly divided into two sets with approximately equal numbers of TN and TP 
cases. Results from the two sets were pooled to estimate the overall performance. 
We also applied multivariable logistic regression to combine the different 
descriptors and predict misannotations. Although the AdaBoost algorithm tends 
to slightly outperform logistic regression, a comparable performance was observed 
for the two methods (Supplementary Fig. 4). All results reported in the paper are 
based on the AdaBoost algorithm.

Labeling experiments. B. subtilis 168 mutants (yngE-null, yngF-null, yngG-null, 
yngH-null, yngI-null and yngJ-null mutants) were obtained from the Medicago 
Main Collection. Growth of these strains was tested using the minimal medium 
M9 supplemented with various carbon sources. The strains were grown on 
sporulation agar medium (DSM) and incubated overnight at 37 °C. On the  
following day, cells were inoculated into sporulation medium49 supplemented with 
5 mM of [U-13C]L-leucine or [U-13C]L-isoleucine (Cambridge Isotope Laboratories) 
at the beginning of the growth curve. The cells were harvested 2.5 h after the onset 
of the sporulation.

Cellular metabolites were extracted using EtOH:H2O (60:40) and 10 mM 
ammonium acetate solution at 70 °C. Cell debris was removed from the extract by 
centrifugation and the supernatant was completely dried. Samples were injected 
in an LC-MS/MS (Agilent) with a C18 column (Waters Atlantis T3 150x2.1x3). 
The identity of the peaks was established by verifying the peak retention time and 
mass spectrum for each mass isotopomer of acetyl-CoA. The natural (background) 
abundance of the m2 isotopomer of acetyl-CoA (8%) was calculated by Analyst 
software (Agilent).
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