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A pressing challenge of human genetics is to combine diverse disease-
related genetic variations to illuminate pathways and networks 
affected in common disorders. Schizophrenia represents an impor-
tant example of a common psychiatric disorder in which a statisti-
cally significant contribution to disease susceptibility has now been 
demonstrated for different types of genetic variations. Specifically, 
several genomic loci associated with common human polymorphisms 
have been implicated by genome-wide association studies (GWAS)1–4, 
a contribution from de novo and rare copy number variants (CNVs) 
has been established5–7, and a significant contribution from de novo 
single nucleotide variants (SNVs) was demonstrated in a recent study 
based on exome sequencing in two populations8.

Biological networks provide a natural framework for integration 
of diverse genetic variations associated with such a complex and 
multifactorial phenotype as schizophrenia9,10. To identify affected 
molecular networks, we have developed an algorithm (NETBAG+) 
that searches for cohesive clusters of genes perturbed by disease-
associated genetic variations (Fig. 1a). The approach is based on the 
previously described phenotype network11, which assigns every pair 
of human genes a score proportional to the likelihood ratio that these 
genes are involved in the same genetic phenotype (Online Methods). 
The phenotype network was used previously to identify a function-
ally cohesive gene cluster perturbed by de novo CNVs in autism11. 
The new NETBAG+ approach is able to integrate data from multiple 
types of genetic variation: SNVs, CNVs and GWAS-implicated loci. 
The greedy search algorithm identifies highly connected gene clus-
ters that are affected by genetic variations, and the significance of the 

identified clusters is then established using an appropriate randomi-
zation (Online Methods). Although we and others have previously 
developed several methods to identify and analyze disease-related 
gene networks11–15, to our knowledge NETBAG+ is the first principled 
approach for integration of diverse sources of genome-wide genetic 
variation under a unified framework. The statistical power of this 
integrative approach stems from the convergence of different types of 
genetic variations on a set of interrelated molecular processes.

Here we applied the NETBAG+ algorithm to integrate several 
unbiased whole-genome data sets associated with schizophrenia. We 
identified several cohesive gene networks related to the disorder and 
characterized their biological and cellular functions. We also inves-
tigated the expression of the network genes in the brain. Finally, we 
examined the relationship between the genes forming the identified 
schizophrenia networks and genes associated with other neurodevelop
mental disorders, such as autism and intellectual disability.

RESULTS
Gene clusters affected by schizophrenia-associated variations
We considered non-synonymous de novo SNVs from recent studies8,16, 
de novo CNVs from published genome-wide scans7,17–23 and genomic 
regions implicated by GWAS1–4,24–28. In total, this set contained 1,044 
genes (159 from non-synonymous de novo SNVs, 712 from de novo 
CNVs, 173 from GWAS) from 213 genomic locations. In searching for 
cohesive gene clusters, the algorithm was allowed to pick any gene affected 
by a de novo SNV, any gene in a de novo CNV (one gene per CNV) or any 
gene in a GWAS-implicated region (one gene per region).
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Despite the successful identification of several relevant genomic loci, the underlying molecular mechanisms of schizophrenia 
remain largely unclear. We developed a computational approach (NETBAG+) that allows an integrated analysis of diverse disease-
related genetic data using a unified statistical framework. The application of this approach to schizophrenia-associated genetic 
variations, obtained using unbiased whole-genome methods, allowed us to identify several cohesive gene networks related to 
axon guidance, neuronal cell mobility, synaptic function and chromosomal remodeling. The genes forming the networks are 
highly expressed in the brain, with higher brain expression during prenatal development. The identified networks are functionally 
related to genes previously implicated in schizophrenia, autism and intellectual disability. A comparative analysis of copy 
number variants associated with autism and schizophrenia suggests that although the molecular networks implicated in these 
distinct disorders may be related, the mutations associated with each disease are likely to lead, at least on average, to different 
functional consequences.
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On the basis of the aforementioned input data, NETBAG+ iden-
tified a significant gene cluster (P < 0.001) containing in total 
47 genes (22 from SNVs, 20 from CNVs, 6 from GWAS regions) 
(Fig. 1b). The identified cluster contained two weakly connected 
subclusters (subcluster Ia and subcluster Ib). In addition to combin-
ing all genetic data (SNVs, CNVs and GWAS regions), we also per-
formed NETBAG+ searches using different combinations of genetic 
variations as the algorithm input (Supplementary Table 1). For 
example, we obtained a marginally significant (P = 0.056) cluster 
using only de novo SNVs (Fig. 1c); all genes in this cluster were 
also members of the cluster obtained using the combined data 
(cluster I). The highest significance was achieved when all types 
of genetic variations were considered together (Supplementary 
Table 1). Thus, different sources of genetic variations appear to 
reinforce each other, increasing the overall cluster significance. 
After masking the genes forming cluster I—that is, removing these 
genes from the input data—the NETBAG+ algorithm was able to 
identify another marginally significant cluster, cluster II (Fig. 1d,  
P = 0.071). Notably, cluster I and cluster II included three of the four 
genes (LAMA2, TRRAP, DPYD) with recurrent non-synonymous 
SNVs in the cohort analyzed in a recent study8 (Fisher’s exact test, 
one-tailed, P = 0.05), supporting the NETBAG+ clustering results 
and also providing more evidence that these genes are involved in 
schizophrenia pathophysiology.

In contrast to the results for non-synonymous SNVs and CNVs 
from schizophrenia patients, we detected no significant clusters in 
various control sets (Supplementary Table 1). For example, there were 
no significant clusters identified when searching genes affected by  

de novo non-synonymous SNVs observed in a control population8, 
synonymous de novo SNVs observed in schizophrenia patients8, or 
non-synonymous de novo SNVs observed in unaffected siblings of 
autism patients in two recently published studies29,30. Furthermore, 
we identified no significant clusters when the aforementioned sets 
were combined with de novo CNVs seen in unaffected siblings of 
autism patients in another recent study31 (Online Methods).

Biological processes associated with schizophrenia clusters
To determine functions of genes forming the identified schizophre-
nia clusters, we used two computational tools (FuncAssociate32 and 
DAVID33) that identify over-represented Gene Ontology (GO) terms 
in a given gene set. These analyses showed that the genes in cluster I 
participate in several important neurodevelopmental processes, such 
as axon guidance, neuron projection development, and cell migra-
tion and locomotion (Table 1 and Supplementary Tables 2 and 3). 
The GO analysis also implicated several cellular pathways, includ-
ing signaling through essential second messengers: calcium, cyclic 
AMP and inositol trisphosphate. Separate analysis of genes forming 
subclusters Ia and Ib (Supplementary Tables 2 and 3) showed that 
the former was enriched for gene functions related to signaling and 
axon guidance, the latter for functions related to neuron mobility 
and locomotion.

The genes forming cluster II (Supplementary Tables 2 and 3) were 
enriched for functions related to chromosomal organization and 
chromosomal remodeling. Notably, a similar GO enrichment analysis of 
all genes affected by non-synonymous de novo SNVs or de novo CNVs 
did not identify any significantly enriched functional terms. Thus,  
the developed computational approach reveals cohesive functional  
networks hidden within the genomic loci affected in schizophrenia.

Temporal expression of genes in schizophrenia clusters
Complementary to curated gene ontology terms, another important 
descriptor of biological function is temporal gene expression pro-
file. To investigate brain-related gene expression, we took advantage  
of the Human Brain Transcriptome (HBT) database34 and calculated  
the median brain expression profiles for the genes forming the 
identified clusters across 15 developmental stages from embryonic 
to late adulthood (Fig. 2a; average expression profiles are shown in 
Supplementary Fig. 1). The level of brain expression for all genes 
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Figure 1  The NETBAG+ approach and the identified schizophrenia gene 
clusters. (a) The NETBAG+ algorithm: different types of genetic variations 
are mapped to a phenotype network (pale gray) in which every pair of 
genes is assigned a score proportional to the likelihood ratio that those 
genes share a genetic phenotype. Strongly interconnected clusters (dark 
gray) are identified among disease-associated genes. Cluster scores are 
based on the weighted sum of edges between all genes in the cluster; this 
score is proportional to the likelihood that all cluster genes share the same 
phenotype. Cluster significance is then established by an appropriate 
randomization (Online Methods). (b) Cluster results from the combined set 
of schizophrenia-associated genetic variations: genes from de novo CNVs 
are in blue, genes from non-synonymous de novo SNVs are in light green 
and genes from GWAS-implicated regions in dark red. Edge widths are 
proportional to the strength of the likelihood score between the two genes, 
and node sizes are proportional to the gene’s contribution to the overall 
cluster score (Online Methods). For simplicity, only the strongest two 
edges from each gene are shown. Cluster I was the best cluster from the 
combined set of all schizophrenia genetic variations (P < 0.001). (c) The 
best cluster found when using only genes affected by non-synonymous  
de novo SNVs (P = 0.056). (d) Cluster II, the best cluster from the 
combined set of all schizophrenia genetic variations when the genes 
forming cluster I were removed from the input data (P = 0.071).
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forming the identified clusters was significantly higher than expres-
sion of all genes in the HBT database (Wilcoxon rank-sum test,  
P < 1 × 10−20) and all genes used as the input for NETBAG+ but not 
selected by the algorithm (P < 1 × 10−20). Moreover, the expression 
of the cluster genes was higher during prenatal than the postnatal 
developmental stages (P < 1 × 10−20). This result is in agreement 
with significant enrichment of nonsynonymous de novo mutations in 
genes with high prenatal expression observed in a recent study8, and 
it suggests that prenatal genetic insults are particularly important for 
the etiology of schizophrenia.

Of note, genes forming subcluster Ia, subcluster Ib and cluster II 
showed distinct expression profiles. Subcluster Ia contains many genes 
with broad brain-related functions that are essential across all develop-
mental periods. The median gene expression in this subcluster was very 
uniform across the developmental stages considered, but with higher 

levels during prenatal periods (P = 1 × 10−6). Genes forming cluster II 
are primarily responsible for chromosomal organization and remod-
eling; their expression is likely to be particularly important during peri-
ods of neuronal development and differentiation. Naturally, the median 
expression profile for the cluster II genes was much higher in prena-
tal than postnatal developmental stages (P < 1 × 10−20). Although the 
genes forming subcluster Ib also displayed higher prenatal expression 
(P = 5 × 10−11), their median expression profile showed a prominent 
decrease between early fetal and late mid-fetal stages, approximately 
corresponding to the period between 10 and 20 weeks after concep-
tion. Several genes (DOCK1, ITGA6, COL3A1, LAMA2, THBS1) in this 
subcluster independently showed U-like expression profiles (Fig. 2b).  

Table 1  GO terms associated with cluster I
N X Padj GO identifier GO term

FuncAssociate
16 326 <0.001 GO:0007411 Axon guidance
11 335 <0.001 GO:0040012 Regulation of locomotion
  7 108 <0.001 GO:0000187 Activation of MAPK activity
  8 193 <0.001 GO:0001666 Response to hypoxia
  9 295 <0.001 GO:0030334 Regulation of cell migration
  9 333 <0.001 GO:0051960 Regulation of nervous system development
  8 289 0.001 GO:0019932 Second-messenger-mediated signaling
  6 132 0.001 GO:0008286 Insulin receptor signaling pathway
  8 307 0.001 GO:0050767 Regulation of neurogenesis
  7 227 0.001 GO:0071375 Cellular response to peptide hormone stimulus
  6 155 0.001 GO:0010975 Regulation of neuron projection development
  7 253 0.002 GO:0045664 Regulation of neuron differentiation
  3   16 0.015 GO:0035004 Phosphatidylinositol 3-kinase activity
  4   54 0.018 GO:0051896 Regulation of protein kinase B signaling cascade
  5 119 0.021 GO:0007204 Elevation of cytosolic calcium ion concentration
  4 58 0.024 GO:0007190 Activation of adenylate cyclase activity
  7 323 0.046 GO:0032870 Cellular response to hormone stimulus
  6 217 0.048 GO:0048011 Nerve growth factor receptor signaling pathway
DAVID
  7 107 8.85E-05 GO:0007411 Axon guidance
  8 169 8.94E-05 GO:0030334 Regulation of cell migration
  9 256 1.09E-04 GO:0031175 Neuron projection development
  8 184 1.33E-04 GO:0000165 MAPKKK cascade
  8 193 1.70E-04 GO:0007409 Axonogenesis
  9 339 6.14E-04 GO:0048666 Neuron development
  6   96 6.47E-04 GO:0009894 Regulation of catabolic process
  7 163 9.33E-04 GO:0030425 Dendrite
  9 342 0.001 GO:0043005 Neuron projection
  7 183 0.001 GO:0006874 Cellular calcium ion homeostasis

GO annotation terms that were over-represented among genes in cluster I (Fig. 1b) on the basis of the analysis with FuncAssociate32 and DAVID33. N is the number of cluster 
genes annotated with a given GO term and X is the total number of human genes with that GO annotation. Padj values in the table represent P-values adjusted for multiple  
hypothesis testing by the Benjamini-Hochberg procedure in DAVID and using simulations32 in FuncAssociate. Repetitive and broad GO terms—that is, terms associated with 
many human genes—are not listed in the table; for a full list of all significant terms, see Supplementary Tables 2 and 3.
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Figure 2  Temporal gene expression profiles in the brain across developmental 
stages for genes forming the identified clusters. Gene expression data were 
obtained from the Human Brain Transcriptome database (http://hbatlas.org/).  
Median expression levels for each gene were quantile normalized values and  
log2-transformed across all samples. (a) Temporal profiles of the median 
gene expression for the schizophrenia clusters shown in Figure 1. Temporal 
profiles of the average gene expression are shown in Supplementary Figure 1.  
Error bars represent s.e.m. across all applicable genes. (b) Temporal 
expression profiles for individual genes forming subcluster Ib. Five genes  
in this subcluster (DOCK1, ITGA6, LAMA2, THBS1 and COL3A1) 
independently exhibited U-shaped expression profiles; that is, high 
expression during embryonic development followed by a decrease in early  
or mid-fetal development and then an increase during late fetal development 
or infancy. Error bars represent s.e.m. across samples.

http://hbatlas.org/
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This observation suggests that in the context of this subcluster, specific 
processes occurring early or late in corticogenesis may be predomi-
nantly affected in schizophrenia.

Processes perturbed in schizophrenia-derived neurons
To further validate biological processes implicated by considering 
diverse genetic variations associated with schizophrenia, we considered  
expression data from a recent study35. In that study, fibroblasts from 
schizophrenia patients were reprogrammed into pluripotent stem 
cells and subsequently differentiated into neurons. The analysis 
implicated a set of 596 genes with significantly altered expression 
levels in patient-derived neurons compared to neurons derived from 
matched controls.

The functional analysis of the differentially expressed genes with 
DAVID identified multiple significant GO terms (Table 2). Many of 
the identified terms matched the terms associated with the functional 
clusters implicated by our analysis of genetic variations (Table 1): 
neuronal differentiation, cell migration and motility, axonogenesis, 
neuron projection development and differentiation. This suggests  
that multiple lines of evidence converge on similar functions  
and processes.

Relation of schizophrenia clusters to related disorders
As we and others demonstrated previously, genes implicated in diverse 
psychiatric and neurological disorders are often closely related in 
terms of their biological and molecular function12,13,36. We explored 
the relationships between the cluster genes (Fig. 1) and genes previ-
ously implicated in schizophrenia, autism and intellectual disability 

using the strength of their connections (that 
is, likelihood ratio scores) in the NETBAG+ 
phenotype network (Online Methods). For 
this analysis, we took each gene in each 
curated set and calculated its connectivity 
strength to the schizophrenia cluster genes. 
We then compared the distribution of these 
connectivities to the connectivities between 
the schizophrenia cluster genes and all genes 
sequenced in a recent study8 (Fig. 3 and 
Table 3). This analysis demonstrated that 
genes in cluster I were strongly related to 
two curated sets of schizophrenia-implicated 
genes37–39 (Wilcoxon rank-sum test, P = 3 × 
10−4 and P = 9 × 10−12). We also observed 
a significant relationship (P = 1 × 10−6) to 
a curated set of genes associated with intel-
lectual disability40. As expected, we found no 
significant relationship to either of two con-
trol sets8: synonymous schizophrenia de novo 

SNVs (P = 0.9) or de novo SNVs in unaffected controls (P = 0.3).
This observation raises a question: how can mutations in related 

and overlapping genes lead to different clinical phenotypes? Although 
a detailed understanding of this question will certainly require exten-
sive clinical and biological research, we decided to gain an initial 
insight by focusing on a distinct phenotype previously considered by 
us and others: growth of dendrites and dendritic spines. Most excita-
tory glutamatergic synapses in the human brain are formed on den-
dritic spines, and their structural aberrations have been implicated in 
several psychiatric and neurological disorders41,42. Likely impact on 
the growth of dendrites or dendritic spines by a gene in a CNV can be 
investigated on the basis of the corresponding dosage change—a dele-
tion or a duplication. Using this approach, we previously noted that 
CNVs associated with autism should primarily lead to an increase in 
spine or dendritic growth11. Notably, a similar analysis in schizophre-
nia based on known mutant phenotypes for CNV-associated cluster 
genes (Supplementary Table 4) revealed the opposite effect (Fig. 4):  
a majority of schizophrenia-associated CNVs should lead to a decrease 
in growth of dendrites or spines. A spine density increase in autism43 
and decrease in schizophrenia44 was observed in postmortem brain 
analyses. We note that many mutations leading to a decrease in spine 
density were also observed in autism45, and an increase in spine den-
sity can actually lead to weaker synaptic connections, for example due 
to immature spine morphology46. Clearly, changes in spine and den-
dritic growth are not the only factors contributing to distinct clinical 
phenotypes. Nevertheless, our analysis does suggest that mutations 
associated with different neurodevelopmental disorders may lead, at 
least on average, to different functional consequences.

Table 3  Connectivity strengths between schizophrenia clusters and other disease sets
Gene sets Number of genes P-value to cluster I P-value to cluster II

Autism set 1, based on CNV cluster from previous analysis11   45 3 × 10−10 0.0006
Autism set 2, based on a literature review40   36 6 × 10−5 0.02
Schizophrenia set 1, based on a meta-analysis37   42 0.0003 0.16
Schizophrenia set 2, based on a meta-analysis38,39   75 1 × 10−11 0.019
Intellectual disability set, based on a literature review40 110 2 × 10−6 0.0003
Synonymous schizophrenia de novo SNVs from a recent study8   25 0.9 0.7
De novo SNVs in unaffected controls from a recent study8   18 0.3 0.2

Statistical significance of functional relationship between schizophrenia clusters and genes previously implicated in schizophrenia and related disorders. Each P-value in the table 
quantifies the difference of two distributions: the distribution of connectivity strengths between a schizophrenia cluster and a given gene set, and the distribution of connectivity  
strengths between the schizophrenia cluster and all human genes sequenced in a recent study8. The NETBAG+ phenotypic network was used to calculate the connectivity 
strengths between each pair of genes. P-values were calculated using the Wilcoxon rank-sum test. Corresponding distributions are plotted in Figure 3.

Table 2  GO terms associated with expression changes in neurons derived from 
schizophrenia patients (DAVID)
N X Padj GO identifier GO term

18 166 0.01 GO:0050767 Regulation of neurogenesis
22 244 0.01 GO:0000904 Cell morphogenesis involved in differentiation
20 192 0.011 GO:0051960 Regulation of nervous system development
16 133 0.013 GO:0045664 Regulation of neuron differentiation
22 256 0.018 GO:0031175 Neuron projection development
19 209 0.025 GO:0048667 Cell morphogenesis involved in neuron differentiation
18 193 0.027 GO:0007409 Axonogenesis
23 307 0.03 GO:0048870 Cell motility
23 307 0.03 GO:0051674 Localization of cell
24 342 0.032 GO:0043005 Neuron projection
16 159 0.039 GO:0030424 Axon
  9   59 0.039 GO:0050769 Positive regulation of neurogenesis

In a recent study35 fibroblasts from schizophrenia patients and controls were reprogrammed into pluripotent stem cells 
that were subsequently differentiated into neurons. The table shows GO terms identified by DAVID33 that are enriched 
among 596 genes with significantly altered expression levels in schizophrenia-derived neurons. N is the number of 
cluster genes annotated with a given GO term and X is the total number of human genes with that GO annotation.  
Padj values in the table represent P-values adjusted by Benjamini-Hochberg procedure in DAVID. Repetitive and broad 
GO terms (that is, terms associated with many human genes) are not listed in the table; for a full list of all significant 
terms, see Supplementary Tables 2 and 3.
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DISCUSSION
It is worthwhile to consider the genes forming the identified clusters not 
only as a network of binary interactions (Fig. 1) but also in the context 
of relevant signaling pathways (Fig. 5). Individual components of the 
presented network are active in diverse developmental and functional 
contexts, such as cell motility, axonal guidance and synaptogenesis. 
Several conceptual signaling levels can be delineated in the network. 
The first layer is formed primarily by a diverse array of receptors and 
channels, ranging from receptors involved in axonal guidance (such 
as ephrins and DCC) to ionotropic and metabotropic neurotransmit-
ter receptors (such as CHRNA7 and HTR7). The second signaling 
layer is formed by cellular kinases, phosphatases and GTPases that are, 
either directly or indirectly, regulated by the 
first signaling layer. The third layer consists of 
regulatory (such as CREB) or structural (such 
as Cofilin) proteins involved in neurite out-
growth, synaptogenesis and synaptic plasticity. 
In addition to the aforementioned horizontal  
layers, several well-defined top-down path-
ways that were previously discussed in 
connection with schizophrenia and other 
brain-related diseases can be recognized47,48. 
These include the reelin, WNT and insulin 
signaling pathways; pathways involving Akt 
and phosphatidylinositol 3-OH kinase, MAP 

kinase, and mTOR signaling; and the protein kinase C and protein 
kinase A pathways. Considering the remarkable diversity of the 
implicated molecular circuits, it is likely that many hundreds of genes  
(>800, according to a recent estimate8) may ultimately contribute to 
the etiology of schizophrenia.

Although genetic variations considered here differ in their type and 
origin, in combination they perturb a complex but interrelated set of 
molecular processes. This functional convergence allows the presented 
integrative approach to identify the cohesive functional networks.  
A similar convergence, resulting from common biological mecha-
nisms underlying disease phenotypes, should also occur in many other 
human disorders. If this is indeed the case, it is likely that genetic data 
collected using unbiased whole-genome approaches and analyzed by 
proper computational methods will soon reveal the underlying molec-
ular networks for a significant fraction of common human maladies, 
thus realizing an important goal of the human genome project.
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Figure 3  Distributions of connectivity strengths between schizophrenia 
clusters and genes previously implicated in schizophrenia and other  
related disorders. (a) Distributions of connectivity strengths between 
cluster I and disease sets. (b) Distributions of connectivity between cluster II  
and disease sets. The x axes show corresponding likelihood scores in 
the NETBAG+ phenotypic network. Disease sets shown in the figure are 
an autism network from the analysis of de novo CNVs11, a curated set 
of autism genes40, two lists of schizophrenia genes37–39 and a list of 
intellectual disability genes40. The distributions were smoothed using a 
Gaussian kernel. Vertical dashed lines indicate the median connectivity 
strength between the schizophrenia clusters identified in the present study 
and all human genes sequenced in a recent study8.
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schizophrenia lead, on average, to the opposite effect. The difference in 
the phenotypic impact for the two disorders was significant (Fisher’s exact 
test, two-tailed, P = 0.01; Barnard’s exact test, two-tailed, P = 0.007). 
Genes that were considered in the analysis, their corresponding CNVs and 
predicted functional impact are provided in Supplementary Table 4.
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Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Schizophrenia-associated genetic variation. We used three types of genetic 
variation: 159 non-synonymous de novo SNVs from two recent studies8,16,  
de novo CNVs from several previous analyses7,17–23 and 14 genomic regions 
that were implicated by SNPs (P < 5 × 10−8) in recent genome-wide association 
studies1–4,24–28 (GWAS). We considered all genes affected by non-synonymous 
de novo SNVs, all genes that overlap the de novo CNVs events according to the 
human genome NCBI build 36 and—following previous studies—all genes over-
lapping a region 250 kb in either direction from SNPs implicated by GWAS; 
similar results were obtained using calculations with distances of 100 kb and 
450 kb from GWAS-implicates SNPs (Supplementary Table 1). In total, our 
set contained 1,044 genes from 213 genomic regions: 159 from SNVs, 712 from 
CNVs, and 173 from loci implicated by GWAS.

Phenotype network. The NETBAG+ algorithm is based on our previously 
described phenotype network11 in which all pairs of human genes are connected 
by weighted edges proportional to the likelihood that the genes share a genetic 
phenotype. These likelihood scores are based on a naive Bayesian integration 
of various protein-function descriptors. The functional descriptors used to 
build the phenotype network are: shared annotations in Gene Ontology (GO), 
Kyoto Encyclopedia of Genes and Genomes (KEGG), protein domains from the 
InterPro database, tissue expression from the TiGER database; direct protein- 
protein interactions, or shared interaction partners in a number of databases 
(BIND, BioGRID, DIP, HPRD, InNetDB, IntAct, BiGG, MINT and MIPS); phylo
genetic profiles and chromosomal co-clustering across sequenced genome49.

NETBAG+ algorithm. Genes affected by the considered genetic variations were 
mapped to the phenotype network. Clusters were assigned a score based on a 
weighted sum of their edges11, representing the likelihood that all cluster genes 
participate in the same genetic phenotype. Starting from each input gene, a greedy 
search algorithm was used to find high-scoring clusters of every size. A cluster 
significance was determined based on a distribution of cluster scores obtained 
by applying the same greedy search algorithm to randomized data. To generate 
random data sets, we selected genes with average connection strengths in the 
phenotype network similar to the corresponding disease-associated input genes. 
This ensures that overall connectivity of disease genes does not drive cluster 
significance. The average connection strength was calculated by averaging the 
20 strongest edges from a particular gene to all other network genes. For a cluster 
of a given size, we assigned a size-specific P-value based on randomized clusters 
of the same size. To correct for multiple hypothesis testing (due to considering 
clusters at multiple sizes), we considered the best P-value from each random trial 
regardless of cluster size and used this distribution to assign a corrected (global) 
P-value to the size-specific P-value. Throughout the paper, we used this corrected 
P-value to characterize cluster significances. We ignored clusters with five genes 
or less to ensure that our analysis was not influenced by very small gene clusters 
with strong connections.

Cluster functional analysis. To establish specific biological functions associated 
with the schizophrenia clusters, we used two computational tools, FuncAssociate 
and DAVID, to find over-represented GO terms. For clarity, we only show GO 
terms associated with fewer than 350 human genes (Supplementary Table 2 for 
FuncAssociate and Supplementary Table 3 for DAVID). In the tables, we report 
P-values corrected for multiple hypothesis testing.

Expression changes in schizophrenia-derived neurons. We considered expres-
sion data from a recent study35. In that study fibroblasts from schizophrenia 
patients and controls were reprogrammed into pluripotent stem cells and sub-
sequently differentiated into neurons. This analysis implicated a set of 596 genes 
with significantly altered expression levels in patient-derived neurons.

Likely impact of CNV events on dendrites and dendritic spines. To assess the 
impact of cluster genes associated with de novo CNVs on the growth of den-
drites and dendritic spines, we performed a literature analysis. CNV polarity  
(deletion or duplication) allowed us to determine a likely change in the corres
ponding gene dosage. CNV-associated genes were taken from either the schizo-
phrenia clusters identified in the present study or the autism cluster identified 

in our previous work11. For the two genes with both duplication and deletion 
events (CRKL and PIAS3), we used the reported CNV frequency5 in both  
disorders to determine the predominant polarity associated with each disease. 
The information about CNV-associated genes, polarities and phenotypes reported 
in the literature is provided in Supplementary Table 4.

Validation and analysis of the identified clusters. In order to validate the 
NETBAG+ phenotype network, the identified clusters and the associated bio-
logical functions, we performed several additional analyses.

First, we demonstrated that the phenotype network and scoring method can 
be used to rank genes responsible for a diverse set of genetic phenotypes. For 
this task, we considered known disease genes from the OMIM database, exclud-
ing diseases that were used in training of the phenotype network, diseases with 
less than three associated genes and diseases with somatic mutations such as 
cancer. In total, we considered 74 genetic phenotypes with 338 associated genes 
(Supplementary Table 5). For each gene in the test set, we randomly selected 99 
decoy human genes with comparable network connectivity. We then ranked these 
100 genes on the basis of the strength of connections in the phenotype network 
to the remaining OMIM genes responsible for the same phenotype. The results 
of this prioritization test showed that the phenotype network and the scoring 
method perform well in ranking disease genes. The correct gene was ranked as 
the top gene (out of 100 genes) in 39% of the cases, in the top three in 53% of the 
cases and in the top ten in 66% of the cases (Supplementary Fig. 2). This demon-
strates that the network and the scoring method are not specific to schizophrenia 
or brain disorders and perform well across diverse phenotypes.

Second, we examined direct protein-protein interactions between genes in 
the identified clusters annotated in BioGRID, HPRD and DIP (Supplementary 
Fig. 3). We performed a commonly used permutation test to understand whether 
clusters identified in our analysis were more densely connected than in structur-
ally equivalent random networks. To generate structurally equivalent random 
networks, the real protein-protein network was permuted by swapping known 
interaction pairs, while conserving the number of connections (degree) of each 
gene. Thirteen known interactions exist between the 47 genes in cluster I, and 
five interactions exist between the 42 genes in cluster II. After permutation, there 
were fewer interactions on average, 8.74 (P = 0.11, Z-score = 1.36) for cluster I 
and 2.8 (P = 0.17, Z-score = 1.21) for cluster II. Consequently, there is only a 
marginal significance for the inter-connectivity of the genes forming the clusters 
in the real network compared to random networks. This result illustrates that 
integrative methods (such as NETBAG+) are more powerful in establishing the 
significance of functional connectivities in disease clusters compared to protein-
protein interactions alone.

Third, we applied our algorithm to an independent set of schizophrenia-related 
CNVs. This set contained rare inherited CNVs, which are more likely to con-
tain a smaller fraction of causative events, and de novo CNVs associated with 
childhood-onset schizophrenia (COS)6. Overall, the independent set included 
48 CNV events (35 inherited and 13 de novo COS events) containing in total 
244 genes. Using this set, NETBAG+ detected a small, but marginally significant  
(P = 0.05), cluster of ten genes (Supplementary Fig. 4). We used DAVID to 
identify GO terms associated with the alternative cluster (Supplementary 
Table 3). This analysis showed that the alternative cluster is associated with many  
biological and cellular functions that are also associated with the clusters identi-
fied in our main analysis: insulin receptor signaling, axonogenesis, regulation of 
cell mobility and locomotion, neuron morphogenesis and differentiation, and 
neuron projection development. Consequently, the alternative set of CNVs pro-
vides an independent confirmation that multiple functions identified in the paper 
are indeed likely to be affected in schizophrenia.

Finally, we performed a manual literature review of all 159 genes with de novo 
SNVs from recent studies8,16. Brief functional descriptions (obtained primarily 
from GenBank and NCBI) for these genes are shown in Supplementary Table 6. 
Using the literature information, we observed that our clusters are enriched in 
genes with known brain and neuronal functions. Specifically, the identified  
clusters contained 26 genes (out of 56 in total) with brain or neural functions 
(Fisher’s exact test P = 10−4, Barnard’s exact test P = 2 × 10−5).

49.	Chen, L. & Vitkup, D. Predicting genes for orphan metabolic activities using 
phylogenetic profiles. Genome Biol. 7, R17 (2006).
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