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The dynamics of gut bacteria can now be monitored with high 
temporal resolution using 16S ribosomal RNA amplicon 
sequencing1,2. Recent longitudinal studies have revealed sub-

stantial day-to-day variability and marked long-term stability of gut 
microbiota3–6. Several studies have also identified important factors, 
such as host diet and lifestyle, that contribute to temporal changes 
in bacterial species abundances4,7–9. However, in contrast to macro-
scopic ecological communities, statistical relationships describing 
gut microbiota dynamics are not well understood. Macroecological 
approaches in ecology seek to understand global statistical relation-
ships between species’ abundances, their spatial and temporal vari-
ability, and taxonomic diversity10–12. Although ideas from ecology 
have been applied to understand static patterns of gut microbial 
diversity and species abundance distributions13,14, a comprehensive 
and quantitative analysis of bacterial macroecological dynamics 
is currently missing. This makes it interesting and timely to apply 
macroecological approaches to describe and understand complex 
dynamics of microbial communities.

In the present study, we sought to investigate dynamic relation-
ships in the gut microbiota using several densely sampled longitu-
dinal studies in humans and mice3,4,8. The considered data spanned 
three independent investigations, and were obtained using different 
sample collection procedures and sequencing protocols. Bacterial 
abundances in these studies were tracked daily for several weeks in 
mice and up to a year in humans; our analysis included four healthy 
human individuals (A, B, M3 and F4) and six individually housed 
mice fed either a low-fat, plant polysaccharide (LFPP) diet or a 
high-fat, high-sugar (HFHS) diet. We used these data to explore 
short-term abundance changes and long-term drift of gut microbi-
ota, species residence and return times, and the temporal variability 
of individual bacterial taxa across humans and different diet groups 
in mice. Collectively, the present study provides a comprehensive 
description of macroecological dynamics of gut microbiota.

Results
Short-term dynamics of gut microbiota. Following a quantitative 
framework used previously to examine the ecological dynamics of 
animal populations15,16, we first investigated short-term temporal 
fluctuations of gut microbiota abundances. One of the most basic 
descriptors of bacterial population dynamics is the short-term abun-
dance change μk(t), defined as the logarithm of the ratio of consecu-
tive bacterial abundances, μkðtÞ ¼ log Xk t þ 1ð Þ=Xk tð Þð Þ

I
, where Xk(t) 

is the relative abundance of a bacterial operational taxonomic unit 
(OTU) k at time t. We calculated μk(t) separately for each OTU k and 
for each day of the considered temporal microbiota datasets; μk(t) 
values calculated in this way represent the rate of abundance changes 
of each OTU averaged over the course of each day. Interestingly, we 
found that the probability of μ averaged across all OTUs and time 
points closely followed a Laplace distribution (equation (1)), with a 
characteristic tent shape in log-transformed probabilities (Fig. 1a–c):

p μð Þ ¼ 1
2b

exp � jμj
b

� �
ð1Þ

Laplace distributions were highly similar within and between 
individual humans, and between humans and mice (parameter 
b = 0.73 ± 0.07, b = 0.82 ± 0.1, mean ± s.d. across all humans and 
LFPP mice, respectively), indicating the universality of these rela-
tionships. Moreover, the Laplace distribution closely approximated 
the distribution of daily abundance changes for every gut micro-
biota time series we analysed (see Extended Data Fig. 1), including 
those defined at various taxonomic resolutions (see Extended Data 
Fig. 1c). We note that the observed distributions are unlikely to arise 
due to combining time series data from multiple OTUs with vastly 
different abundance fluctuations (see Extended Data Fig. 1d)17,18, or 
as a result of using relative bacterial abundances, that is, the compo-
sitional nature of the temporal datasets (see Extended Data Fig. 3).
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In contrast to the Gaussian distribution (see Extended Data  
Fig. 1 and Supplementary Fig. 2 for model fits), which is expected 
when bacterial growth is affected by random multiplicative pro-
cesses14,19, the Laplace distribution indicates substantially higher 
probabilities for large short-term bacterial abundance fluctuations. 
Laplace distributions of abundance variability may arise due to 
density-dependent birth and death rates in a migrating population20 
or through emergence of subspecialized environmental niches21. 
Nevertheless, the exact mechanisms and dynamic processes gener-
ating these distributions are currently not well understood and need 
to be investigated further. The symmetry of the Laplace distribu-
tion suggests an equal probability for an increase or a decrease in 
species’ abundances, which reflects a zero-sum process due to finite 
resources in the gut. Interestingly, Laplace distributions, describ-
ing short-term changes in species abundances or changes in other 
characteristic variables, have been observed across many diverse 
ecological and economic systems. These include species abundance 
changes in bird communities15,16, fish populations22 and tropical rain 
forest ecosytems20, as well as fluctuations in sales for publicly traded 
companies23 and changes in country-level gross domestic products24 
(see Extended Data Fig. 3a). Similar to these complex ecological and 
interacting systems, the gut microbiota may often exhibit sudden 
large-scale abundance fluctuations.

In many complex ecosystems, the short-term abundance fluc-
tuations often depend on species’ current abundances15,16,23,24.  
We therefore investigated the relationship between species’ 
abundances and the corresponding standard deviation (s.d.) of  
daily abundance changes. To this end, for each OTU in the consid-
ered human and mouse datasets, we calculated its average abun-
dance on each day. We then sorted all OTUs into bins based on 
their average abundances, and, for each abundance bin, calculated 
the average s.d. of daily abundance changes μk(t) (Fig. 2). The  
analysis revealed that the variability of OTU daily abundance 
changes decreased approximately linearly with increasing mean 
daily abundance (Fig. 2). This result was not due to sampling  
errors associated with finite sequencing depth (see Extended 
Data Fig. 4), and the decrease in the variability of daily abun-
dance changes was also observed at the single OTU level (see 
Extended Data Fig. 5). Moreover, the observed behaviour was 
similar between human and mouse gut microbiota (regression 
slopes r = −0.15 ± 0.01, −0.17 ± 0.03, mean ± s.d. across humans 
and mice, respectively). Thus, highly abundant bacteria exhibited 
substantially smaller relative daily fluctuations compared with 
bacteria with lower abundances, which may be due to the presence 
of more stable nutrient niches.

Long-term dynamics and stability of gut microbiota. In addition 
to short-term dynamics, interesting long-term dynamic trends have 
also been observed across different macroscopic ecosystems16,17,25. 
To explore the long-term behaviour of gut microbiota, we inves-
tigated how the mean-squared displacement of log-relative OTU 
abundance <δ2(Δt)> changed with time. Specifically, for each time 
interval, Δt, and each OTU, k, we calculated the displacement of 
its log-relative abundance, δ(Δt)k = log(Xk(t + Δt)/Xk(t)). Squared 
displacements were then averaged, for a fixed interval Δt, across 
all time points and all OTUs, yielding <δ2(Δt)>, the mean-squared 
displacement of log-relative abundance. Similar to the behaviour of 
other diverse ecological communities (see Extended Data Fig. 3c), 
we found that the long-term drift of gut microbiota abundances was 
well approximated by the equation of anomalous diffusion (Fig. 3 
and see Extended Data Fig. 6):

hδ2 Δtð Þi / Δt2H ð2Þ

where H is the Hurst exponent quantifying the collective rate of 
microbiota abundance drift over time26. In comparison with nor-
mal diffusion (H = 0.5), a Hurst exponent of H > 0.5 indicates a ten-
dency for an increase (or decrease) in abundance to be followed by 
a further increase (or decrease), whereas a value of H < 0.5 indicates 
a higher degree of stability and a tendency for abundance to revert 
to its mean. In contrast to short-term fluctuations of bacterial abun-
dances, described by the Laplace distribution (equation (1), Fig. 1), 
the Hurst exponent in equation (2) quantifies the rate at which the 
average root mean-squared displacement of abundance increases 
as a function of time. Both in human and mouse gut microbiota, 
our analysis revealed small Hurst exponents (H = 0.09 ± 0.03, 
H = 0.08 ± 0.02, mean ± s.d. across humans and mice, respectively). 
This suggests that, despite overall stability5,27,28, gut microbiota 
exhibit a slow but continuous and predictable long-term abundance 
drift. Furthermore, the temporal dynamics of individual OTU 
abundances was also well approximated by the equation of anom-
alous diffusion (see Extended Data Fig. 7a), with the distribution 
of Hurst exponents across individual OTUs exhibiting substantial 
variability (see Extended Data Fig. 7b). This demonstrates the het-
erogeneity of the long-term stability of different gut bacterial taxa 
within and across hosts.

Both short- and long-term dynamics of gut microbiota con-
tribute to the overall turnover of gut bacterial species. To directly 
investigate the dynamics of gut microbiota composition, we 
next calculated the distribution of residence (tres) and return (tret) 
times for individual OTUs. Following previous macroecological  
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Fig. 1 | Distribution of daily abundance changes of gut bacteria. a–c, Daily abundance changes were defined as μkðtÞ ¼ log Xk tþ 1ð Þ=Xk tð Þð Þ
I

. The 
probability of μ calculated over all OTUs and time points closely follows a Laplace distribution (equation (1)), with a characteristic tent shape in log-
transformed probabilities. Results are shown for two individuals from different human studies (A (a) and M3 (b)) and mice fed an LFPP diet (c). Laplace 
exponents are b = 0.83 ± 0.1 for human A (a), b = 0.71 ± 0.07 for human M3 (b) and b = 0.82 ± 0.10 for LFPP mice (c) (mean ± s.d.; n = 6 equal subsamples 
of the data for humans and n = 3 animals for mice; see Methods). Solid lines represent MLE fits to the data. Abundance changes in c were combined across 
the three mice on the LFPP diet.
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analyses16,29,30, we defined residence times as the time intervals 
between the emergence and subsequent disappearance of cor-
responding OTUs; analogously, return times were defined as the 
intervals between disappearance and re-emergence of OTUs. For 
the considered microbiota datasets, we first calculated the resi-
dence and return times for each disappearance/appearance event 
corresponding to each OTU. We then aggregated the residence 
and return times across all events and all OTUs to calculate their 
distributions (Fig. 4). Again, we observed bacteria residence pat-
terns very similar to those previously described in diverse ecological 
communities16,29,30 (see Extended Data Fig. 3b). Specifically, the dis-
tributions of tres and tret were described well by power laws (equation 
(3)), with exponential tails resulting from the finite length of the 
analysed time series (Fig. 4, and see Extended Data Fig. 8a,b and 
Supplementary Fig. 2):

p tð Þ / t�αe�λt ð3Þ

The residence time distributions were similar within and between 
individual human and mouse gut microbiota (αres = 2.3 ± 0.05, 
αret = 1.2 ± 0.02; mean ± s.d. across humans; αres = 2.2 ± 0.04, 
αret = 0.72 ± 0.03, across mice on the LFPP diet), suggesting that the 
processes governing the local emergence and disappearance of gut 
bacteria are probably independent of the specific host. The power 
law distribution of residence times may arise, even in an isotropic 
environment, from the dynamics of births, deaths and species migra-
tion patterns defined by the spatial structure of the ecosystem29.  

Notably, the power-law exponents (with values ~2) of the bacteria 
residence time distributions are similar to those previously observed 
in macroecological communities29.

Taylor’s law and identification of bacterial OTUs with perturbed 
dynamics. Having characterized the distributions of daily abun-
dance changes and residence times, we next investigated the tem-
poral variability of individual OTU abundances. One of the most 
general relationships in ecology, observed across hundreds of dif-
ferent biological communities, is known as Taylor’s power law31–34. 
This law connects species’ average abundances to their temporal or 
spatial variances:

σ2X ¼ CXβ ð4Þ

where C is a constant, X and σ2X
I

 are the mean and variance of spe-
cies abundance, respectively, and β is a positive scaling exponent. 
For processes following simple Poisson fluctuations, the param-
eter β = 1, whereas for processes with constant per capita growth 
variability35, β = 2. Values of β have been empirically observed to 
lie between 1 and 2 for the vast majority of investigated plant and 
animal species36. We note that in macroscopic ecological communi-
ties, Taylor’s law is usually used to describe the behaviour of a single 
species. In contrast, similar to a previous microbiota analysis37, we 
investigated how the temporal abundance variability scales with 
the average bacterial abundance across all OTUs. Interestingly, our 
analysis revealed that the temporal variability patterns of gut micro-
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Fig. 3 | long-term drift of gut microbiota abundances. a–c, In humans and mice, the mean-squared displacement of log-relative OTU abundance (<δ2(Δt)>) 
increases with time as a power law of the form <δ2(Δt)> ∝ Δt2H. Hurst exponents, which quantify the rate of abundance drifts, are H = 0.07 ± 0.03, 0.08 ± 0.02 
and 0.08 ± 0.02 for human A (a), human M3 (b) and LFPP mice (c), respectively (mean ± s.d.; n = 6 equal subsamples of the data; see Methods). The data in c 
represent an average over the n = 3 individual mice on the LFPP diet (see Methods). Dashed lines represent least-squares regression fits to the data.
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Fig. 2 | Scaling of the variability in daily abundance changes with average bacterial abundance. a–c, Across each OTU k, the s.d. of daily abundance 
changes (σμ) decreases with average daily abundance (xm), defined as the mean of successive log-abundance values: xm ¼ 1

2 log Xkðtþ 1Þð Þ þ logðXkðtÞÞ½ 
I. The results are shown for two individuals from different human studies (A (a) and M3 (b)) and mice fed an LFPP diet (c). Dashed lines represent least-

squares regression fits to the data, with slopes of r = −0.16 ± 0.02, −0.16 ± 0.02 and −0.17 ± 0.03 for A (a), M3 (b) and LFPP mice (c), respectively 
(mean ± s.d.; n = 6 equal subsamples of the data for humans and n = 3 animals for mice; see Methods). Abundance changes in c were combined across the 
three mice on the LFPP diet.
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biota also closely followed Taylor’s law (Fig. 5 and see Extended Data  
Fig. 9a,b), with exponents for human and mouse gut microbiota gen-
erally consistent with values observed previously in other ecological 
communities36 (β =1.7 ± 0.02 across all four humans, β = 1.49 ± 0.02 
across LFPP mice). The compositional nature of microbiota datasets 
did not explain the values of Taylor’s law exponents (see Extended 
Data Fig. 10), and dynamics consistent with Taylor’s law have also 
been observed in a recent short-term analysis of the human vagi-
nal microbiota37. It has been previously suggested that competitive 
interactions between species may result in a Taylor’s law exponent 
in the range between 1 and 2 (ref. 35). Alternatively, Taylor’s law with 
non-trivial exponents may arise due to stochastic demographics of 
population growth and decline36, the presence of species subtypes 
each with a Gamma-distributed abundance,38 or a balance between 
the species’ tendency to aggregate and disperse34,39. Taylor’s law may 
also arise across a broad range of mathematical models describ-
ing population dynamics, without the need for a specific biological 
mechanism40,41. In the future, it will be interesting to investigate and 
compare the aforementioned theoretical models specifically in the 
context of microbiota dynamics.

Although Taylor’s law described the overall dynamics of gut 
microbiota well, some specific OTUs clearly deviated from the 
general trend (Fig. 5). To determine whether their behaviour 
reflected specific ecological perturbations, we identified all OTUs 
that exhibited notable and abrupt increases in abundance during 
previously documented periods of travel in human A and enteric 

infection in human B4 (see Methods). Interestingly, these travel- 
and infection-related OTUs closely matched the outliers from 
Taylor’s law (Fig. 5a,b, blue circles), displaying on average approxi-
mately tenfold greater variance than expected based on the overall 
Taylor’s law trend (see Extended Data Fig. 9a,c and Supplementary  
Table 1). Many of these OTUs were members of the Proteobacteria 
(in human A: OTU 13, family Enterobacteriaceae; OTU 29, family 
Pasteurellaceae; OTU 5771, family Enterobacteriaceae; in human 
B: OTU 13, family Enterobacteriaceae), which were associated 
with the microbiota perturbations4 (see Supplementary Table 1). 
Moreover, other OTUs, primarily belonging to the Firmicutes, 
that exhibited abrupt changes in abundance (in human A: OTU 
25, family Peptostreptococcaceae; in human B: OTU 95, family 
Ruminococcaceae; OTU 110, family Ruminococcaceae), also dis-
played higher temporal variability than expected based on Taylor’s 
law (Fig. 5a,b, purple circles; see also Extended Data Fig. 9c and 
Supplementary Table 1). These results suggest that macroecologi-
cal relationships can be used to identify and characterize specific 
microbial taxa that are likely involved in periods of dysbiosis and 
context-specific environmental perturbations.

Effects of different diets on macroecological dynamics of gut 
microbiota. It is well established that the dynamics of diverse eco-
systems are strongly affected by their environment42. Host dietary 
intake is a major environmental factor influencing gut bacterial 
abundances7,8,43 and disease phenotypes44,45. Therefore, we next 
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explored how different diets affect the observed macroecological 
relationships describing gut microbiota dynamics. To this end, we 
used data from the study of Carmody et al.8, who investigated faecal 
bacterial abundances in individually housed mice fed either a low-
fat (LFPP) diet or a high-fat (HFHS) diet. Our analysis revealed that 
the short-term dynamics of gut microbiota were notably affected by 
the diets. While the s.d. of daily abundance changes declined rapidly 
with increasing OTU abundance in the LFPP mice (Fig. 6a, green), it 
remained more homogeneous across OTU abundances in the HFHS 
mice (Fig. 6a, purple; regression slopes r = −0.17 ± 0.03 for the LFPP 
diet, and −0.08 ± 0.02 for the HFHS diet; Z-test of regression coef-
ficients, P = 2.0 × 10−5). The relatively smaller short-term variability 
of highly abundant species on the LFPP diet probably reflects more 
stable niches for some bacteria (such as Bacteroidetes) that may pri-
marily catabolize dietary fibres. On the other hand, relatively higher 
fluctuations of lowly abundant bacteria on this diet may be induced 
by cross-feeding on catabolic byproducts of highly abundant species. 
The observed dependence of short-term abundance variability on 
species abundance is much weaker on the HFHS diet, which may 
result from a general loss of niche diversity due to the substantially 
reduced nutrient complexity of that diet. Alternatively, these trends 
may reflect diet-dependent influence and interactions between the 
gut microbiota and the host, for example, diet effects on the host 
immune system46 or the gastrointestinal tract physiology47.

In other ecological communities, smaller short-term fluctuations 
of species abundance do not necessarily lead to increased long-term 
ecological stability48,49. Thus, in addition to short-term fluctuations, 
we also investigated how different diets affected the long-term abun-
dance drift of gut microbiota. Hurst exponents were notably larger 
in the HFHS mice, indicating substantially faster long-term drift 

of bacterial abundance on this diet (Fig. 6b and see Extended Data  
Fig. 6b; H = 0.19 ± 0.02 for the HFHS diet, and 0.08 ± 0.02 for the 
LFPP diet; Z-test P < 1 × 10−10). We note that short-term fluctuations 
in abundance were somewhat higher on the LFPP diet compared 
with the HFHS diet, which is reflected in a higher y-axis intercept 
for the diffusion on the LFPP diet (Fig. 6b, green); the higher inter-
cept is due to larger short-term fluctuations of numerous lowly 
abundant bacteria on the LFPP diet compared with the HFHS diet 
(Fig. 6a). Despite the intercept differences, the observed diffusion 
trend continued over long time scales (>100 days, based on the data 
in Fig. 3). Therefore, the long-term increase of the mean-squared 
displacement of microbiota abundances is likely to depend primar-
ily on the difference in the respective Hurst exponents.

Previous studies have demonstrated diet-induced compositional 
shifts of gut microbiota7,8,43 and a reduced gut bacterial diversity 
in western populations, attributed in part to altered dietary hab-
its50–52. Our analysis shows that different diets not only affect the 
composition of gut microbiota, but also substantially change their 
long-term dynamics. The reduced long-term stability on the HFHS 
diet may result from a higher degree of neutral drift and increased 
interspecies competition associated with a more homogeneous 
nutrient environment53. Our analysis demonstrated that while the 
abundance drifts of Bacteroidetes and Firmicutes, two major phyla 
in the mouse gut, were relatively similar on the HFHS diet (Hurst 
exponent, H = 0.18 ± 0.1 for Bacteroidetes, and H = 0.18 ± 0.03 for 
Firmicutes), the Bacteroidetes exhibited a significantly reduced drift 
on the LFPP diet compared with the Firmicutes (H = 0.03 ± 0.06 and 
H = 0.09 ± 0.02; Z-test P = 3 × 10−8). This suggests that, although the 
LFPP diet decreased the long-term abundance drift of all taxa, the 
stability of the Bacteroidetes was particularly affected by this diet.
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Fig. 6 | Dynamics of gut microbiota in mice fed different diets. a, OTUs in mice fed a low-fat LFPP diet show a stronger dependence of the variability in 
daily abundance changes (σμ) on the average daily abundance (xm) compared with those fed a high-fat HFHS diet (regression slopes: r = −0.17 ± 0.03, 
r = −0.08 ± 0.02 (mean ± s.d.) for LFPP (green) and HFHS (purple) mice, respectively). Data were combined across the three mice on each diet, and 
dashed lines represent least-squares regression fits to the data. b, OTU abundances in the LFPP mice exhibit a slower long-term abundance drift compared 
with drift in the HFHS mice (H = 0.08 ± 0.02 and H = 0.19 ± 0.02 for LFPP and HFHS mice, respectively). c,d, Taylor’s law relationships show differences in 
the overall scaling of the average OTU abundance and the s.d. of the temporal abundance on each diet (LFPP diet (c) and HFHS diet (d); β = 1.49 ± 0.02, 
β = 1.86 ± 0.07, respectively), driven by the temporal behaviour of the Bacteroidetes in the LFPP mice (blue circles). Data were combined from the n = 3 
mice on each diet. Dashed lines represent least-squares regression fits performed using the combined data.
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Different diets may not only change overall gut microbiota 
dynamics, but also alter the temporal variability of individual 
taxa relative to the rest of the community. To understand taxa-
specific changes, we next examined Taylor’s law in mice on the 
LFPP diet (Fig. 6c) and the HFHS diets (Fig. 6d). We calculated, 
for each diet, the temporal mean and variance of each OTU, and 
then aggregated the data points across multiple mice on the same 
diet. Interestingly, it was previously demonstrated that the Taylor’s 
law exponent may depend on the environment, at least for some 
species54–56. Our analysis of the gut microbiota dynamics on the 
different diets is consistent with these observations. Specifically, 
we found that the power-law exponents were significantly dif-
ferent between the two diets (β = 1.49 ± 0.02 for the LFPP diet, 
β = 1.86 ± 0.07 for the HFHS diet; Z-test P = 1.5 × 10−6). The tem-
poral fluctuations of the Bacteroidetes (Fig. 6c,d, blue circles) 
exhibited significantly lower variability given their abundance on 
the LFPP diet, but not on the HFHS diet (hypergeometric test, 
P = 2.4 × 10−4; see Supplementary Table 2 and Methods). Moreover, 
we observed significantly lower Taylor’s law exponents on the 
LFPP diet, specifically for the Bacteroidetes (β = 1.66 ± 0.06 on the 
LFPP diet, β = 1.95 ± 0.03 on the HFHS diet; Z-test P = 0.0023), 
but not for all other bacterial taxa (β = 1.84 ± 0.2 for the LFPP diet, 
β = 1.86 ± 0.07 for the HFHS diet; Z-test P = 0.39). Notably, the 
highly abundant Bacteroidetes and their lower temporal variabil-
ity on the LFPP diet were primarily responsible for the relatively 
smaller short-term fluctuations of highly abundant bacteria on 
this diet (Fig. 6a, green). Bacteroidetes are known to metabolize a 
wide range of dietary fibres present in the LFPP diet57–59, and are 
predominantly lost during multigenerational propagation of mice 
on a low-fibre diet51. This suggests that specific members of the 
Bacteroidetes (in our case, OTU 118, OTU 237, OTU 364, fam-
ily Porphyromonadaceae; see Supplementary Table 2) may exhibit 
both smaller temporal variability and slower abundance drift by 
directly exploiting stable niches that are present on the LFPP diet 
and probably lost on the HFHS diet. These results demonstrate 
that macroecological analyses can be used to identify specific taxa 
with temporal dynamics affected by different diets.

Discussion
The present study demonstrates that, despite an amazing diversity 
of interactions and organizational complexity, the dynamics of gut 
microbiota can be described by multiple robust quantitative rela-
tionships. The scaling laws revealed by our analysis characterize 
both short- and long-term microbiota dynamics, and are usually 
observed across many orders of magnitude in time and bacterial 
abundances. Furthermore, we show that these relationships are 
unlikely to arise due to technical noise and the compositional nature 
of microbiota datasets. Despite the difference of more than six orders 
of magnitude in the relevant spatial and interaction scales, the sta-
tistical relationships described in the present study are strikingly 
similar to those observed previously in many diverse macroecologi-
cal systems. This similarity suggests that the temporal processes in 
both macroscopic and microbial communities may be governed by 
a universal set of underlying mechanisms and principles.

We anticipate that the quantitative statistical framework devel-
oped in macroecology60–63 will be important for analysing micro-
biota dynamics. Because the observed statistical relationships 
describe different aspects of community dynamics, an important 
goal for future studies will be to unify these observations into an 
integrated view of microbial ecology, which also takes into account 
the spatial and environmental dimensions. Moreover, the ability to 
easily perturb microbiota composition and environment, add and 
remove particular species, as well as monitor species abundance at 
high temporal and spatial resolution, suggests an exciting oppor-
tunity to use microbiota as a convenient model system to explore 
general laws of ecology.

We also envision a quantitative ecological framework being impor-
tant for understanding how host-specific and environmental factors 
influence the dynamics of human gut and other health-related micro-
biota. The presented results suggest that the observed macroecological 
relationships can be used to identify both global changes of micro-
biota dynamics and specific taxa with abnormal temporal behaviour. 
Such taxa may serve as biomarkers of disease and clinically relevant 
perturbations64,65. Therefore, it will be important to investigate how 
the quantitative macroecological relationships revealed in our study 
vary across large and densely sampled human cohorts66–68.

Methods
Analysis of 16S rRNA sequences. Raw 16S rRNA sequencing data for humans 
A and B were obtained from the European Nucleotide Archive (accession no.: 
PRJEB6518 (ref. 4)). Raw sequencing data from humans M3 and F4 and mice 
were obtained from the MG-RAST database69 (4457768.3-4459735.3 for humans; 
4597621.3-4599933.3 for mice). Sequences were analysed using USEARCH 
8.1 (ref. 70) with an open clustering approach. For studies including unfiltered 
sequencing reads, filtering was performed using the –fastq_filter command with 
the expected maximum number of 2 wrong bases per read. All reads were then 
truncated to 100 base pairs, with shorter reads discarded. Following a conventional 
approach, reads were de-replicated and clustered at 97% sequence similarity, using 
the –cluster_otus command to generate OTUs with a minimum of two sequences. 
Sequences were then assigned to OTUs using the –usearch_global command, 
resulting in an OTU table for each dataset. OTU taxonomic assignments were 
made using the RDP classifier71. Sequencing reads from each sample were then 
rarefied to a depth of 25,000 and 17,000 for the two human studies (A/B, M3/F4), 
respectively, and 25,000 for the mouse study, using Qiime 1.8 (ref. 72).

OTU inclusion criteria. To control for known technical factors such as sample 
preparation and sequencing noise, analysis was restricted to OTUs passing two 
sets of criteria. First, OTUs were required to be present in over half of the samples 
within respective subjects. Second, they were required to have a mean relative 
abundance >1 × 10−3 over the time series. This abundance cutoff corresponded to a 
mean of 25 reads (humans A and B, and LFPP/HFHS mice) and 17 reads (humans 
M3 and F4) over respective sampling periods. The final analysis of humans 
included ~75 OTUs comprising ~90% of the reads with OTU assignments in any 
given sample. For mice, these criteria resulted in the inclusion of ~70 OTUs in the 
HFHS diet and ~55 OTUs in the LFPP diet, comprising ~90% of reads with OTU 
assignments in a given sample. As the HFHS mice initially received an LFPP diet, 
the analysis of these mice began 5 days after the diet shift. For the calculation of 
residence and return times, different inclusion criteria were imposed, because these 
analyses would be biased by a specific prevalence cutoff and were more robust to 
noise in OTU abundance levels.

Daily abundance changes. Daily abundance changes were defined as 
μkðtÞ ¼ log Xk t þ 1ð Þ=Xk tð Þð Þ
I

, where Xk(t) is the relative abundance of a given 
OTU k on day t. The presented distributions represented the combined data across 
all OTUs. To obtain the average distributions, we first calculated distributions of 
daily abundance changes for each OTU across all time points. We then combined 
the distributions from all considered OTUs. In addition, for human datasets, 
we investigated whether the resulting Laplace distributions of daily abundance 
changes depend on aggregating OTUs with different abundance fluctuations. To 
this end, we first normalized the daily abundance changes for each individual 
OTU by its s.d. calculated across each temporal dataset. The resulting normalized 
distributions were then combined across all OTUs and across all human datasets 
(see Extended Data Fig. 1d). To estimate the variability of the distribution of daily 
abundance changes within human subjects, each time series was divided into six 
consecutive time periods of equal length (estimates were generally insensitive to 
the number of time periods). Within each time frame, daily abundance changes 
were calculated and maximum likelihood estimation (MLE) was used to fit the 
Laplace distribution exponent, with the mean and s.d. of these values reported 
in the main text. For the mouse study, s.d.s reflected variability across the three 
individual mice on each diet. Mean daily abundance, xm, was defined as the mean 
of consecutive log-OTU abundances: xm ¼ 1

2 log Xk t þ 1ð Þð Þ þ logðXk tð ÞÞ½ 
I

. To 
estimate the variability in daily abundance changes as a function of abundance, 
abundance changes were binned by values of xm using a bin size of 0.4, and s.d. (σμ) 
values were then calculated on the binned abundance changes. For comparisons of 
diets, daily abundance changes were combined across the three mice on each diet. 
Abundance changes and mean daily abundances were calculated using the base ten 
logarithm in all figures, while the natural log was used for parameter estimation.

Hurst exponents. The mean-squared displacement of log-OTU abundances was 
estimated as:

hδ2 Δtð Þi ¼ 1
NðT � ΔtÞ

X

k

X

i

½xk ti þ Δtð Þ � xk tið Þ2
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where the angle brackets denote a community average (over time points and 
OTUs). Here, xk(ti) is the log-relative abundance of OTU k at time ti, N is the total 
number of OTUs, T is the number of days in a time series, and (T – Δt) is the 
number of time windows over which the averaging is performed. A maximum 
time lag of 100 days and 15 days was chosen for humans and mice, respectively, due 
to the finite length of each time series. Hurst exponents were then calculated by 
regressing <δ2(Δt)> against Δt in log-transformed axes. To estimate the variability 
of Hurst exponents within human subjects, time series were divided into six 
equal-length time frames, as was done for daily abundance change calculations. 
Hurst exponents for individual OTUs were estimated in a similar fashion, but 
with displacements restricted to time averages. For comparisons of diets, Hurst 
exponents were additionally averaged over mice within each diet:

hδ2 Δtð Þidiet ¼
1
L

X

l

1
NlðTl � ΔtÞ

X

k

X

i

½xl;k ti þ Δtð Þ � xl;k tið Þ2

where the outermost summation is over individual mice l (L = 3) on each diet.

Residence and return times. Residence times (tres,k) of an OTU k corresponded 
to the number of consecutive time points between its appearance (Ta,k) and 
disappearance (Td,k) in the community: tres,k = Td,k − Ta,k. Here, Ta,k is a time point 
at which the OTU appeared in the community, with no reads detected on the 
previous collection date, and Td,k is the closest time point at which the OTU reads 
were no longer detected. Return times (tret) were similarly defined as the number 
of consecutive time points between an OTU disappearance (Td,k) and reappearance 
(Ta,k) in the community: tret,k = Ta,k − Td,k. Only intervals that fell entirely within 
the time period of the study were included. A series of alternative criteria was 
also considered to ensure robustness of the residence/return time distributions: 
(1) to ensure that the results were not biased by sequencing detection sensitivity, 
the distributions were recalculated using data subsampled to various sequencing 
depths (down to 1,000 reads per sample); (2) to account for false negatives in 
read detection, single read counts of zero, interrupting a run of consecutive 
non-zero abundances, were neglected, that is, an OTU with zero reads at time 
t was considered to be present in the community if that OTU was also present 
at times t − 1 and t + 1; (3) to control for false positives in read detection, OTU 
abundances with a single read were neglected and treated as zero counts. Results 
were qualitatively insensitive to both the sampling depth and the aforementioned 
alternative read detection criteria. To estimate the variability of distribution 
parameters within humans, OTUs were randomly assigned into six equal-sized 
groups. Residence and return times were then calculated within each assigned 
group, and exponents fitted using MLE, with means and s.d.s calculated across the 
groups. Within diets, means and s.d.s were calculated across individual mice.

Taylor’s power law. The mean abundance Xk and its variance σ2Xk

I
 for each OTU 

k were calculated across the corresponding time series. Taylor’s exponents were 
obtained by performing linear regression of the log-transformed means and 
variances across OTUs in each subject. To estimate the variability of exponents 
within subjects, time series were divided into six consecutive time periods of equal 
length as described previously. Spiking OTUs were defined as those with a single-
day abundance greater by more than 25-fold than the average abundance calculated 
across all other days. Travel-related and infection-related OTUs in humans A and B 
were identified as those with abundances that spiked by more than 25-fold during 
the documented periods of travel and infection7. For mice, Taylor’s law outliers 
were identified using a likelihood-based approach. Briefly, linear regression on 
the log-transformed means and variances was performed excluding a single OTU 
k. The probability of observing the left-out OTU k was then calculated using 
a Gaussian likelihood function based on estimated residuals. All OTUs with 
probability less than α = 0.025 were considered to be outliers. For diet comparisons, 
means and variances were combined across individual mice within diets groups.

Simulations of sampling errors associated with finite sequencing depth. Read 
counts were simulated using a multinomial distribution with parameters p and N. 
The average abundance vector p across all OTUs was estimated separately for each 
human A, B, M3 and F4. The sampling depth N was equal to the total sequencing 
depth used in each study (25,000 reads per sample for humans A and B; 17,000 
reads per sample for humans M3 and F4). Simulations were performed multiple 
times to generate sample OTU trajectories for each human that solely reflected 
sampling errors. To account for sporadic sequencing read dropouts, zero counts 
were introduced into simulations of each OTU to match the empirical frequency of 
zero counts observed in the real data.

Simulations of macroecological dynamics across a range of community 
diversities. Initial (t = t0) abundances of N = 65 species were generated using 
power-law distributions. The power-law exponents were selected to generate a 
range of community diversities, quantified by the effective number of species 
(ENS = eH, where H is the Shannon diversity). To simulate Gaussian daily 
abundance changes (see Extended Data Fig. 2), the Ornstein–Uhlenbeck  
process was used to generate 1,000 consecutive time points. For the Taylor’s law 
analyses (see Extended Data Fig. 10), we performed simulations analogous to 

those of Kilpatrick and Ives35. Specifically, abundances of the 65 non-interacting 
species were simulated for 300 time points, matching the number of OTUs 
and samples in human A. The simulations were performed using absolute 
abundances, and the scaling relationships were then calculated using either 
absolute or relative abundances.

Statistics. All statistical analysis was performed using custom scripts written in 
MATLAB (https://www.mathworks.com). Comparisons of estimated exponents 
between mouse diet groups were performed by first calculating the relevant 
coefficient and associated s.e.m. of the data combined across the three mice in each 
diet group. Z-tests were then performed comparing the two coefficients associated 
with each diet group, assuming normality of the s.e.m. Reported P values 
correspond to one-sided tests.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All sequencing data used in the present study can be downloaded from the 
European Nucleotide Archive (accession no. PRJEB6518 for humans A and B; 
see ref. 4 for metadata) and MG-RAST databases (4457768.3–4459735.3 (https://
www.mg-rast.org/linkin.cgi?project=mgp93) for humans M3 and F4 (ref. 3); 
4597621.3–4599933.3 (https://www.mg-rast.org/linkin.cgi?project=mgp11172) for 
mice8). These data were used to generate all figures in the main text, Supplementary 
information and Extended Data, with the exception of Extended Data Fig. 3, for 
which the figures were adapted from the original references16,17,22–24,63; figures from 
the original references were digitized and the resulting data points re-plotted.

code availability
All MATLAB scripts used to perform data analysis and generate figures are 
available on GitHub (https://github.com/brianwji/Macroecological-Relationships).
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Extended Data Fig. 1 | Distribution of daily abundance changes for human and mouse gut microbiota. Daily abundance changes for an OTU were 
calculated as the logarithm of the ratio of successive abundances, μ ¼ logðX tþ 1ð Þ=X tð ÞÞ

I
, where X(t) is the relative abundance of the OTU on day t. 

The distributions of abundance changes for the analyzed bacterial communities closely follow the Laplace distribution: p μð Þ ¼ ð1=2bÞexpð�jμj=bÞ
I

 in a, 
humans (b = 0.83 ± 0.1, 0.67 ± 0.1, 0.71 ± 0.07, 0.73 ± 0.05, human A, B, M3, F4, respectively; mean ± s.d., across n = 6 equal subsamples of the data, 
see  Methods) and b, mice (b = 0.82 ± 0.1, 0.67 ± 0.03, mice on the LFPP and HFHS diets, respectively; mean ± s.d., across n = 3 individual mice). c, Daily 
abundance changes of gut microbiota calculated at different taxonomic resolutions. Microbiota abundance changes were calculated as the logarithm 
of the ratio of successive abundances, μ ¼ logðX tþ 1ð Þ=X tð ÞÞ

I
, where X(t) corresponds to the sum of abundances on day t for all OTUs within the same 

taxonomic group. OTUs were defined at the level of 97% sequence similarity of 16S rRNA. d, Distribution of normalized daily abundance changes in the 
human gut microbiota. To obtain the distribution, daily abundance changes for individual OTUs were first normalized by their corresponding standard 
deviations. The distributions of resulting normalized abundance changes were then combined across all OTUs and across humans A, B, M3, and F4. 
Barplot shows the Akaike Information Criterion (AIC) calculated based on the maximum likelihood estimate (MLE) fits to the data using the Gaussian 
and Laplace distributions. The bars show the mean AIC calculated across 10,000 bootstrap samples of the abundance changes data, errors represent 
the standard deviation, and the triple asterisk *** represents p<10-4; across the 104 bootstrap samples, the AIC were always smaller for the Laplace 
distributions, indicating better fits to the data. In all panels, solid lines show MLE fits to the data.
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Extended Data Fig. 2 | compositional effects on the distribution of daily abundance changes for bacterial communities with various diversities. 
Simulations of bacterial community dynamics (with N=65 OTUs) were performed using the Ornstein-Uhlenbeck process. Black dots represent the 
resulting distributions of daily absolute abundance changes, while hollow dots represent the distributions of daily relative abundance changes. In panels 
(a-c), steady-state OTU abundances in each community were sampled from a power law, where the power law exponent was selected to generate 
bacterial communities with different diversities; community diversities were quantified by the effective number of species (ENS = eH, where H is the 
Shannon diversity). In (d), the simulated steady-state OTU abundances were equal to those in the real data. In all panels, solid lines represent Gaussian 
distribution fits to the simulated data.
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Extended Data Fig. 3 | growth rate distributions in diverse ecological communities and economic systems. a, Annual growth rate distributions of North 
American bird populations16, marine species abundances22, publicly-traded company sales23 and university R&D expenditures24. Figures were adapted from 
their original text. Distributions of company sales and R&D expenditures were re-plotted for companies with initial dollar sales of more than one billion 
dollars and universities with large R&D expenditures (see refs. 23,24 for details). Lines are provided for visual purposes only. b, Residence time distributions 
of species from diverse ecosystems. Figures were adapted from ref. 63, with original data describing North American breeding bird species, estuarine fish 
species, and plant species collected from both prairie and forest ecosystems. Lines are provided for visual purposes only. c, Long-term drift of bird species 
abundances16 and North Atlantic fish stock abundances17. Figures were adapted from their original text.
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Extended Data Fig. 4 | Variability in daily abundance changes for human gut microbiota. a-d, Black data points show the standard deviation of daily OTU 
abundance changes as a function of average daily OTU abundances xm ¼ 1

2 log Xkðtþ 1Þð Þ þ logðXkðtÞÞ½ 
I

 in humans. Gray data points were generated by 
simulating time series data in which OTU abundance changes originated exclusively from Poissonian sampling noise. The simulations were performed by 
sampling sequencing read counts from the underlying OTU abundance distributions empirically observed in humans A, B, M3, and F4 (Methods). Random 
zero counts were added for each OTU to match the frequency of its zero counts in the real data. Sequencing reads were sampled to the same depths as in 
the real data. The simulations demonstrate that the observed decrease in the variability of OTU abundance changes as a function of the average daily OTU 
abundances is not a result of simple Poissonian sampling effects.
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Extended Data Fig. 5 | Standard deviations of daily abundance changes decrease with increasing average daily abundances for individual oTUs. 
Standard deviations of changes in daily OTU abundance as a function of the average OTU abundance; the standard deviations were calculated, for each 
OTU separately, across bins of various daily OTU abundances. The abundance bins were selected to have an equal number of time points in each bin. 
Panel a shows the relationships for each OTU in Human A. Dotted lines represent regression fits to the data for each OTU. Panels are sorted according to 
the p-value of the regression fits, and the slopes of the fits are shown in the top right corner of each panel (n=7). The 48 out of the total of 65 OTUs shown 
here are significant, based on the FDR cutoff of 10% (the Benjamini-Hochberg method). b, Distribution of slopes of the linear regression fits across 154 
OTUs and the four human datasets. Only the OTUs with regression p-values significant based on the FDR cutoff of 10% are shown.
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Extended Data Fig. 6 | long-term drift of gut microbiota abundances in humans and mice. a,b, Mean-squared displacements of log-relative OTU 
abundances <δ2(Δt)> as a function of time Δt. Dashed lines represent regression fits to the data using the equation of abnormal diffusion <δ2(Δt)>∝Δt2H, 
where H is the Hurst exponent characterizing the diffusion process. The diffusion Hurst exponents are H = 0.07 ± 0.03, 0.10 ± 0.04, 0.08 ± 0.02, 0.1 ± 
0.07 for humans A, B, M3, and F4, respectively, and H = 0.08 ± 0.02, 0.19 ± 0.02 for the LFPP and HFHS mice (mean ± s.d., n = 6 equal subsamples of 
the data for humans and n = 3 animals for mice, see Methods).
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Extended Data Fig. 7 | long-term drift of individual oTU abundances. a, Mean-squared displacements of log-relative abundance for individual OTUs 
<δ2(Δt)> as a function of time Δt. Dashed lines represent regression fits to data, using the abnormal diffusion equation <δ2(Δt)>∝Δt2H, where H is the 
Hurst exponent characterizing the diffusion process. Panels correspond to individual OTUs from human A. The Hurst exponents were determined using 
least squared regression fits to n = 100 data points for each OTU (see Methods). b, Distributions of Hurst exponents across individual OTUs in humans A, 
B, M3, F4. The Hurst exponents describing the abundance drift of the entire bacterial communites in each human are indicated by dashed lines.
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Extended Data Fig. 8 | Distributions of residence and return times of gut microbiota in humans and mice. Distributions of residence and return times for 
a, human and b, mouse gut microbiota. Solid lines represent fits to the data using power laws with exponential tails of the form p(t)∝t−αe−λt. In humans, the 
power law exponents are αres = 2.3 ± 0.04, 2.2 ± 0.05, 2.2 ± 0.07, and 2.14 ± 0.08 for the residence times and αret = 1.1 ± 0.02, 0.15 ± 0.03, 1.2 ± 0.05, and 
1.09 ± 0.07 for the return times (A, B, M3, F4 respectively; mean ± s.d., n = 6 equal subsamples of the data, see Methods). In mice, αres = 2.2 ± 0.04, 2.2 
± 0.03 and αret = 0.72 ± 0.03,0.67 ± 0.06 for the LFPP and HFHS diet groups, respectively (mean ± s.d., across n = 3 mice).
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Extended Data Fig. 9 | Taylor’s power law relationships in human and mouse gut microbiota. Temporal abundance variances σ2X
I

 as a function of 
average species abundances X in (a) human and (b) mouse gut microbiota. Dashed lines represent least-squares fits to the data using Taylor’s power 
law of the form σ2X / Xβ

I
. Each dot represents the mean and temporal abundance variance for a single OTU. a, The power law exponents in humans are 

β = 1.66 ± 0.09, 1.60 ± 0.08, 1.71 ± 0.07, 1.71 ± 0.07 for humans A, B, M3, and F4, respectively (mean ± s.d., n = 6 equal subsamples of the data, see 
Methods). Colored dots denote specific OTUs whose abundances on any day exceeded the average abundance over all other days by more than 25-fold 
(Supplementary Table 1). b, The power law exponents in mice are β = 1.49 ± 0.02 and 1.86 ± 0.07 for the LFPP and HFHS diets, respectively (mean ± s.d., 
across n = 3 mice). c, The temporal profile of relative abundances of spiking OTUs identified in (a) for the two humans (A and B), whose lifestyles were 
documented over the time series. Major events affecting the gut microbiota of these individuals included travel of individual A to a developing country 
near day 100, and an enteric infection in individual B near day 150.
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Extended Data Fig. 10 | effects of the compositional nature of microbiota data on Taylor’s law exponents. To investigate possible effects of the 
compositional nature of microbiota data on Taylor’s law exponents, simulations were carried out in absolute abundances using a model identical to the 
one used by Kilpatrick and Ives35; in the model, Taylor’s law exponents of 2 were expected. After converting absolute bacterial abundances, obtained in 
the simulations, to relative abundances, Taylor’s law exponents were recalculated to assess the effects of data compositionality. a, Steady-state OTU 
abundances for each simulated community were drawn from a power law, with the power law exponents selected to generate a range of community 
diversities; the community diversities were quantified by the effective number of species (ENS = eH, where H is the Shannon diversity). Across ENS 
values (x axis), the resulting Taylor’s exponents (y axis), calculated using absolute and relative abundances, are shown by solid and dashed black lines, 
respectively. Error bars represent the standard deviation across n = 20 independent simulations. The colored semi-dotted lines represent the Taylor’s 
exponents observed in real data in the four human datasets analyzed in our study. b, A representative simulation in which steady-state OTU abundances 
were equal to the mean abundances in Human A.
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