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Completeness in structural genomics

Dennis Vitkup®2, Eugene Melamud?, John Moult® and Chris Sander®4

Structural genomics has the goal of obtaining useful, three-dimensional models of all proteins by a combination
of experimental structure determination and comparative model building. We evaluate different strategies for
optimizing information return on effort. The strategy that maximizes structural coverage requires about seven
times fewer structure determinations compared with the strategy in which targets are selected at random. With a
choice of reasonable model quality and the goal of 90% coverage, we extrapolate the estimate of the total effort
of structural genomics. It would take ~16,000 carefully selected structure determinations to construct useful
atomic models for the vast majority of all proteins. In practice, unless there is global coordination of target
selection, the total effort will likely increase by a factor of three. The task can be accomplished within a decade
provided that selection of targets is highly coordinated and significant funding is available.

The success of genome sequencing projects and advances in pro-
tein structure determination have led the structural biology
community to propose a comprehensive effort, often referred to
as structural genomics'-%, to map protein structure space.
Structural genomics may develop into a major international col-
laboration similar to the human genome sequencing project.
Several pilot projects are currently under way in the United
States (http://www.x12c.nsls.bnl.gov/StrGen.htm), Europe (http://
userpage.chemie.fu-berlin.de/~psf/index.html) and Asia.

What are the specific goals of structural genomics? A variety of
objectives have been proposed’ ranging from obtaining represen-
tative structures for all protein folds (estimated at 2,000-4,000
structures®) to solving the structures of all human proteins
(85,000 protein genes)1. Here we explore the goal of obtaining a
set such that accurate atomic models can be built for almost all
functional domains, including those resulting from alternative
splicing and post-translational modifications. The goals of struc-
tural genomics are qualitatively different from those of genome
sequencing projects. Sequencing genomics has a well-defined
scope — the experimental determination of the complete (con-
sensus) nucleotide sequence of a particular organism — for exam-
ple, the approximately three billion base pairs for the human
genome. For structural genomics, the overall scope is less well
defined because it depends on the ratio of structures determined
experimentally and structural models built computationally.
Additionally, although the sequences of each additional organism
have to be determined experimentally, most structures of related
organisms can be determined with little additional experimental
effort using homology modeling methods.

This paper explores a number of alternative approaches to
yield completeness in structural coverage of protein sequence
space and to estimate the total effort required under different
scenarios. First, we consider the accuracy of current modeling
methods in order to quantify the ratio of experimental and com-
putational effort. Second, we investigate the extent to which the
known fraction of protein space is covered by experimental or
computational structures. Third, we quantify the relationship
between the scope of structural genomics and the quality of
structural models obtained. We then calculate the number of
experimental structure determinations required to cover a well-

defined set of currently known protein families. Several possible
scenarios of protein space coverage are explored. Finally, we esti-
mate the number of experimental structure determinations
required to provide structural models for the vast majority of
proteins from all organisms.

Accuracy of structural modeling

The number of experimental structure determinations required to
cover protein space depends critically on the reliability of homolo-
gy modeling methods. We aim at a careful choice of requirements
for minimal sequence similarity using data on modeling accuracy
from the Critical Assessment of Techniques for Protein Structure
Predictions (CASP)!1, CASP collects and analyzes bona fide struc-
ture predictions from a large number of participating research
groups, spanning a wide range of relationships between the model
and template structures. To quantify modeling quality we use the
reported spatial deviations and alignment errors between model
and structural template as a function of the sequence identity
(Fig. 1a,b). We drew the conclusion, as had others'213, that models
based on <30% sequence identity have significant alignment
errors, resulting in large errors in main chain positions. Structural
models based on >30-35% sequence identity tend to have reason-
ably low alignment and structural errors. For this and higher
sequence identity, it is often possible to correlate differences in
function within protein families with structural variations. In this
paper, we call models based on at least 30% sequence identity ‘rea-
sonably accurate’ or, for brevity, ‘accurate’

Structural coverage of currently known proteins

Before estimating how many experimental structures will be
needed to build models of all proteins, computing the structural
coverage of the currently known ones is instructive. Structural
coverage for [B00,000 sequences in the databases SWISS-PROT
(SP, release 37) plus TrEMBL (release 11)* was calculated using
the profile method PSI-BLAST® and reported as a function of
sequence identity and the fraction of the sequence aligned
between the sequence of the modeling target and that of a pro-
tein of known structure (Fig. 2). Often, these alignments corre-
spond to distinct structural domains®-'8 and do not cover the
full length of the modeling target sequence.
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Using these alignments as structural templates, accurate struc-
tural models covering the full length of the protein (upper right
quadrant, Fig. 2) can be constructed for 19% of the proteins in
SP + TrEMBL. For an additional 10% of the proteins, such model-
ing is possible for part of the sequence (lower right quadrant). In
all, some structural information, whether full length or not, is
available for 43% (19%+10%+10%+4%) of the proteins in SP +
TrEMBL. How many reasonably accurate models can be built for
each experimental structure? As the PDB (Protein Data Bank,
January 2000) has 3,100 nonredundant structures filtered at 95%
sequence identity’®, the modeling ratio of full length structural
models to the number of experimental protein structures is cur-
rently (0.19 x 300,000) / 3,100, or [R0. That is, for every unique
protein in the PDB, on average 20 reasonably accurate full length
models may be built from SP + TrEMBL sequences. We expect this
ratio to increase as more and more sequences become available. At
the same time, the growing database of experimental structures
will in general put more and more sequences within reach of
model building based on several alternative structural templates,
with an attendant potential gain of modeling accuracy202,

Structural coverage of fully sequenced genomes

Reliable extrapolation from the different current sequence data
sets to all natural protein sequences is difficult because of uneven
representation of types of proteins and species. Therefore, we
computed the structural coverage of a representative set of com-
pletely sequenced genomes (not including the recently complet-
ed human genome) as a basis for more reliable extrapolation.
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Fig. 1 Accuracy of CASP protein structure models as a function of target-
template sequence identity. Data are from all models from CASP2 and
CASP3 (Critical Assessment of Techniques for Protein Structure
Predictions'?) for which >80% of the protein residues are modeled. Each
data point represents an average over the six best predictions for a single
target. The range bars delineate the most and the least accurate models
out of each set of six best predictions. a, As sequence identity falls below
30%, errors in Ca coordinates rapidly increase. RMSD is root mean square
(r.m.s.) positional deviation. b, The primary cause of this effect is align-
ment errors between target and template sequences. The alignment
error is quantified as the percentage of misaligned residues in 3D. Model
data were obtained from the CASP Web site (http://prediction
center.linl.gov).

The coverage differs significantly depending on whether one
focuses on the fraction of protein sequences with a link to a
known structure (using a more permissive threshold in results
from PSI-BLAST similarity searches — that is, optimistic view;
Table 1) or the fraction of the total number of amino acid
residues that can be accurately modeled (using the less permis-
sive threshold of 30% minimal sequence identity over aligned
regions in results from FASTA searches — that is, realistic view;
Table 1). In the optimistic view, some structural information is
available for 30-35% of sequences of genomes. In contrast, in the
realistic view, only [5-10% of residues from complete genomes
can be placed in accurate structural models. Note that by using
more sensitive methods and data from more recent structures, it
is possible to increase the fraction of genomic sequences with a
link to a fold to ~50% and the fraction of all residues with such a
link to ~40% (J. Gough and C. Chothia, pers. comm., see also
http://stash.mrc-Imb.cam.ac.uk/superfamily).

Compared with structural coverage of complete genomes, the
SP + TrEMBL sequence database (Fig. 2) is clearly biased in that it
contains a larger fraction than found in complete genomes of
accurately modelable residues (23% versus 5-10%). To estimate
the overall effort in structural genomics, we use genome-based
numbers. These numbers are similar in spirit, but different in
detail, from those of other studies of structural assignment across
completely sequenced genomes?>-25,

Scope as a function of desired model quality

We now take a detailed look at the way in which the number of
experimental structure determinations required to cover protein
space depends on the reliability of homology modeling methods.
Anticipating complete organization of protein sequences into
domain families across all species, we use the current Pfam col-
lection of protein alignments?® and perform data simulations
with models built using template structures at differing levels of
model quality. More precisely, in each simulation run, we set the
minimal model quality in terms of a maximal modeling distance
or minimal model-template sequence identity.

As an illustration of coverage at different levels of minimal
model quality, consider the example of the ras-like protein fami-
ly (G-domain) in yeast. This is best visualized in a two-dimen-
sional projection (Fig. 3) of a higher-dimensional protein
sequence space in which distances between points (each point is
a family member) represent the modeling distance between pro-
teins, quantified as percent residue differences between amino
acid sequences. At a given minimal modeling quality, a certain
number of structural templates (centers of circles) are needed to
provide modeling coverage to sequence neighbors (contained in
acircle). A decrease in maximal modeling distance (smaller cir-
cles) leads to higher accuracy structural models; however, more
experimental structure determinations (more circles) must be
made to cover family members.
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Fig. 2 Current structural coverage of proteins in
SP + TrEMBL. Color contours show the density
of models that can be currently built as a func-
tion of the fraction of the sequence included in
a model (vertical axis), and the sequence identi-
ty between the modeled protein and the clos-
est known experimental structure (horizontal
axis). The distribution was constructed for SP +
TrEMBL (release 7 and 11, respectively; SP =
SWISS-PROT) using sequence profile searches
with PSI-BLAST (see Methods) against proteins
with known structures in the PDB (Protein Data
Bank). Models to the right of the vertical red
line are based on >30% sequence identity over
the length of the aligned subsequences and are
of relatively high quality; these are called ‘accu-
rate’ or ‘reasonably accurate’ models in the text
and form the basis of the estimates of modeling
density. Models above the horizontal red line
cover 80% or more of the sequence. The most
useful models (upper right, 19% of the total)
are at high levels of sequence identity and
cover most of the length of the protein.
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To simulate structural coverage as a function of minimal
model quality, we use release 4.4 of PfamA, which contains 2,000
domain families (including, by our definition, 1,626 nonmem-
brane families) constructed from 260,000 domain sequences.
Most Pfam families represent structural domains? and are
assembled using sequence profiles in the form of hidden Markov
models (HMMs)2. Manual curators aim at ensuring high quality
alignments and accurate definition of domain boundaries. Of
the proteins in SP + TrEMBL, [63% have at least one domain in
Pfam?.

The number of structure determinations required was estimat-
ed using a greedy coverage algorithm?®. The greedy algorithm first
selects the structural target (template structure) that would gen-
erate the maximum number of models for sequences within the
maximal modeling distance, then the target that returns the max-
imum number of models for the remaining sequences in the fam-
ily is selected, and so on, until there are no sequences left that
cannot be modeled. The algorithm is run repeatedly on a given
collection of family alignments for different values of maximal
modeling distance. The results are as follows.

Assuming that 30% or better sequence identity is required for
accurate modeling, (113,000 experimental structures are required
to cover models for all nonmembrane domains (in 1,626 fami-
lies) in Pfam. Many of these have already been done (we estimate
~35% of all residues using the criteria of Table 1, second col-
umn), but the point here is to derive numbers for modeling den-
sity in a known family collection and use these for extrapolation
to less well-known regions of protein sequence space. Inclusion
of membrane associated families in Pfam increases the number
of structure determinations required for accurate modeling of all
260,000 sequences in Pfam to 17,000.

How does the number of structure determinations required to
cover the Pfam collection depend on desired model quality? First
of all, there is a clear trade-off between model quality and exper-
imental effort (Fig. 4): as minimal modeling quality (horizontal
axis) increases, more template structures (vertical axis) are
required. Above 30% sequence identity, the number of experi-
mental structure determinations increases approximately linear-
ly with the minimal sequence identity between model and
template. The slope change at [20% sequence identity represents
the current limit of sensitivity for reliably grouping protein
domains into families. For modeling distances in the twilight
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zone of sequence identity (~10-20%), modeling density is high-
est, so that a single structure determination of any protein from
the family is often sufficient to cover all family members but with
a high penalty in model quality. The shape of the curve (Fig. 4) is
such that a minimal modeling distance at 30% sequence identity
captures most of the savings in effort (decrease in the number of
structure determinations), confirming our choice of minimal
model quality for the purposes of estimating the scope of struc-
tural genomics.

Practical considerations in covering protein space
A number of factors may modify our simple estimates. Here, we
consider (i) substantial savings from a slight relaxation of com-
pleteness requirements; (ii) realistic success rates of structure
determination; (iii) special types of protein sequences; and
(iv) variation in target selection strategy.

(i) Quasi-completeness: in computing the minimal number of
structure determinations for complete model coverage of all pro-

Table 1 Two views of current structural
coverage of complete genomes!

Organism Optimistic view? Realistic view?3
M. genitalium 36% 10.5%
M. pnemonie 32% 7.7%
H. pylori 29% 7.8%
M. jannashii 32% 6.0%
H. influenza 39% 10.3%
B. subtilis 31% 10.1%
E. coli 31% 9.9%
S. cerevisiae 36% 6.8%
C. elegans 35% 6.5%

1Full genus names: Mycoplasma genitalium, Mycoplasma pnemonie,
Helicobacter pylori, Methanoccoccus jannashii, Haemophilus influenza,
Bacillus  subtilis, Escherichia coli, Saccharomyces cerevisiae,
Caenhorabditis elegans

2Percentage of genomic sequences with a link to a known structure.
SPercentage of genome residues in accurate homology models (based on
30% or higher sequence identity). The fraction of genome sequences for
which a partial structural model, including those at low accuracy, can be
constructed. The coverage of genome sequences and residues was
obtained using sequence searches with PSI-BLAST and FASTA (see
Methods).
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tein domains in Pfam, we relaxed the completeness requirement
from 100% to 90% and found a substantial decrease in effort
from 13,000 to 8,300 structure determinations (4,000 struc-
tures if membrane proteins are included). This large drop is a
consequence of the uneven distribution of proteins in sequence
space. Coverage of relatively dense regions of protein space — for
example, Ras, Rab, Rho, Arf-Sar (Fig. 3) — requires few struc-
ture determinations to obtain many models. In contrast, cover-
age of sparse regions of protein space — for example, Ran
subfamily (Fig. 3) — returns much fewer models per structure
determination. In light of these data, it is impractical to aim for
achieving 100% structural coverage of protein space. Instead, a
reasonable objective for structural genomics is to focus on the
denser parts of protein space (except as dictated by particular
biological interest), aiming in general to obtain accurate models
for 90% of all sequences.

(ii) Realistic success rates: in practice, structure determina-
tion for certain proteins, whether by crystallography or by
nuclear magnetic resonance spectroscopy, can be difficult or
impossible because of a variety of problems — for example, in
cloning, expression, purification, concentration, labeling
and/or crystal growth. In an attempt to estimate how experi-
mental difficulties affect structural coverage, we simulated cov-
erage of Pfam families by assuming different success rates of
structure determination. A less than perfect success rate was
represented in a modified version of the greedy algorithm as fol-
lows: whenever a possible target is selected for structure deter-
mination, a random number generator is used to simulate if a

Fig. 4 Scope of structural coverage as a function of model quality. The
number of experimental structure determinations required to model all
sequences in nonmembrane associated Pfam families as a function of
sequence identity between the modeling target and the experimentally
determined template structure. A greedy coverage algorithm was used
to approximate the minimal number of structure determinations
required to cover 100% (red) or 90% (black) of nonmembrane protein
sequences in Pfam. Above 30% sequence identity, the number of struc-
ture determinations is approximately proportional to model quality
(measured by sequence identity). Note that for sequence identity in the
25-35% range there is a significant reduction (by a factor of 3-4) in the
number of structures required to cover 90% rather than 100% of all
sequences. Pfam release 4.4 containing 2,000 families was used for all
calculations.
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Rho subfamily

Fig. 3 Structural coverage of a protein family, illustrated
using the Ras family in yeast as an example. Members of
the family (labeled dots) are projected onto a plane (see
Methods). The distance between points is approximately
proportional to the modeling distance (modeling distance
=100% - sequence identity). The circles represents structur-
al coverage based on different levels of model-template
sequence identity: 20% (green), 30% (red) or 50% (blue).
Increasing the number of structure determinations results
in more accurate models; for example, structure determina-
tion of a single protein (YPT6 in the center of the green cir-
cle) allows modeling of all family members based on >20%
sequence identity to the structural template. Solving the
structure of five proteins (red circles) allows modeling
based on >30% sequence identity; solving the structure of
15 proteins (blue circles), modeling based on >50% identity.
For clarity, experimental structural information already
available for the Ras family is not taken into account.

Ras subfamily

structure determination would be successful. For a success, the
algorithm proceeded as usual. Otherwise, structure determina-
tion was assumed to be impossible and was never attempted
again for that protein.

Simulation of the impact of different success rates on the
structural coverage of Pfam families (Fig. 5a) shows that cover-
age is not seriously affected by a decrease of success rate down to
values of [0.2 (one success in five attempts). Even a success rate
as low as 0.1 does not decrease coverage by >10 percentage
points. The reason is that large families usually provide several
alternative targets, often from different organisms, that may be
equally suitable as templates for structural modeling. As genome
sequencing continues, families will grow larger, and structural
genomics will be able to accommodate even smaller success rates
without compromising overall coverage. Early returns from pilot
structural genomics projects suggest success rates considerably
better than 0.1. For example, in one project® a first set of 62 target
proteins from asingle organism has already yielded 15 structures
(success rate of 0.2).

(iii) Nonstandard sequence regions: in addition to globular
and transmembrane domains, a currently undetermined frac-
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Fig. 5 Two factors affecting the scale of structural genomics. a, Protein
space coverage at different success rates of structure determination. The
coverage algorithm assumes that any desired structure can be obtained
experimentally. In practice, many choices will restrict that choice. We
estimate the reduction in the coverage of protein sequence space by
models based on >30% sequence identity as a function of the success
rate in getting the desired experimental structures. All nonmembrane
proteins from Pfam4.4 were used in the calculation. Success rates
between 1:1 (100% successful) and 1:10 are considered. As many families
provide a number of alternative structural targets, it is possible to
achieve nearly the same final coverage of protein space, within 10 per-
centage points, down to a success rate of about 1:10. b, Different scenar-
ios of protein space coverage. The coverage algorithm assumes that the
experimental community will focus on proteins that maximize the num-
ber of models that can be built. In practice, such a universal coordination
in target selection is unlikely. Here we compare three scenarios and how
they affect the number of models that can be built for a given number of
structure determinations. In the first (blue), the greedy strategy that
maximizes the number of built models is used. In the second (green), pro-
teins are selected at random for structure determination; this strategy
requires seven times more structure determinations to achieve 90% cov-
erage of protein space compared to the first. In the third (red), interme-
diate strategy, it is assumed that proteins are chosen for structural study
randomly, but only if they are <30% in sequence identity to a known
structure The third strategy requires 2.5x more structure determinations
for 90% coverage compared with the first. All hnonmembrane associated
proteins in Pfam4.4 were used in the calculation.

tion of proteins are not suitable for mainstream structural
genomics. These are filamentous proteins, such as simple coiled
coils, which can easily be modeled computationally, as well as
regions having unusual amino acid composition, sometimes
called low-complexity regions?, for which structure solution
presents an unsolved problem. Finally, an unknown fraction of
domains are likely to attain a well-defined structure only as part
of a large complex with attendant experimental difficulties. We
have not included these effects here.

(iv)Alternative strategies: A major practical consideration is
the choice of targets for structure determination, with different
criteria applied by different laboratories — for example, medical
or functional significance, or species representation. We simulat-
ed how different strategies will affect coverage of protein space
by varying the target selection process (Fig. 5b). A maximal
modeling distance of 30% was used in all cases. The first strategy
focused exclusively on the maximal return of accurate structural
models (simulated using the simple greedy algorithm, see
above). The payoff is measured by the fraction of the protein
space covered (the blue curve in Fig. 5b). As noted earlier, this
strategy results in [B,300 structure determinations in order to
cover 90% of protein space. The second possible strategy is com-
pletely random selection of the targets (red curve in Fig. 5b).
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Assuming that, to a first approximation, functionally important
proteins are randomly distributed in protein sequence space, this
strategy approximates space coverage with selection of structural
targets based exclusively on functional importance. To achieve
90% coverage, about seven times as many structure determina-
tions are needed compared with the first strategy. In practice it is
likely that an intermediate strategy will be adopted by the struc-
tural genomics community. For example, in the third strategy
considered, targets are selected at random but only if they have
<30% sequence identity to an already determined structure
(green curve in Fig. 5b). The third strategy requires about two to
three times as many structure determination to achieve 90% cov-
erage compared with the optimal first strategy.

Table 2 Coverage of complete genomes/chromosomes by current Pfam domain families?

Organism name? Fraction of sequences
with at least one

Pfam domain

E. coli (4,257) 52%
M. jannashii (1,715) 50%
S. cerevisiae (6,406) 46%
C. elegans (16,332) 48%
A. thaliana, chromosome 2 (4,038) 49%
D. melanogaster (13,710) 53%
Human, chromosome 22 (482) 60%
SWISS-PROT + TrEMBL ([300,000) 63%

Number of
unigue Pfam
domains found

Fraction of residues
covered by
Pfam domains

38% 753
36% 499
23% 752
22% 819
23% 510
22% 939
30% 174
45% 2,000

1Coverage was calculated using HMM profiles searches with HMMer?®’. Typically, about half of the proteins in a genome contain at least one Pfam

domain, representing approximately one quarter of the residues.

2Number of proteins in a genome or chromosome is indicated in parenthesis.
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Towards comprehensive clustering of protein space

Can the structural genomics approach be efficiently applied to
cover all protein space? The answer depends on the feasibility of
clustering the vast majority of protein space into a set of domain
families of nontrivial size, such that models can be built of many
family members based on one or a few structural representatives.
This depends on the diversity and number of genomes
sequenced. With many genome sequencing projects underway,
time favors the aggregation of proteins into families in our data-
bases. For example, domain families of size one, sometimes called
singletons, have been declining as a fraction of the total number
of families. Even if singletons as a fraction of families within
genomes remained at 10%, aggregation of homologs between
genomes will lead to their rapid disappearance.

Eukaryotic genomes in particular appear to have a significant
degree of sequence similarity within and between organisms,
indicative of paralogy or homology. For example, a study of a
continuous stretch of genomic sequence from the Adh region in
Drosophila melanogaster! reported that [172% of genes have
homology to sequences in other eukaryotic organisms. Such a
high level of sequence homology is impressive if one considers
that only a small fraction of eukaryotic genomes is currently
available. In addition, recent analysis of the complete genome
sequence of D. melanogaster showed that 60% of human ‘disease
genes’ have full-length homologs in the fly genome®. A high
level of sequence similarity was also found in the genome analy-
sis of Caenhorabditis elegans®®, Arabidopsis thaliana®35 and
human chromosome 22 (ref. 36) genomes.

Once representative organisms in major branches of the tree of
life have been sequenced, we expect that additional sequencing
will turn up increasingly less sequence diversity, but the likeli-
hood that new coding sequences will join existing families will
steadily increase. Therefore, most of protein space can be clus-
tered into large families of homologous/paralogous protein
domains. Possible exceptions are proteins or segments with
unusual composition, sometimes called low complexity regions,
as well as some filamentous regions. We could, therefore, reason-
ably and cautiously extrapolate the results of data simulations
using the Pfam domain family database to estimate the number
of structure determinations required to structurally cover most
sequences from all organisms.

Structure determinations to cover most protein space

We estimate the total number of experimental structure determi-
nations required to cover all of protein space in two steps: (i) we
estimate the total number of domain families by assessing which
fraction of all coding regions in key genomes can be assigned to
known Pfam domain families (Table 2), and (ii) we then assume,
to a first approximation, that the modeling density within the
Pfam domain database applies to all protein space, including
currently unknown families. This estimation based on Pfam is a
good starting point, but may be biased by the tendency of known
Pfam families to be large and well characterized and may likely
underrepresent both filamentous proteins and proteins with
amino acid composition atypical of globular proteins. The
HMMer package®” was used to calculate the fraction of genome
residues that can be assigned to known Pfam families (Table 2).
The results of our calculations are consistent with earlier studies
by Bateman et al.?% and do not depend on the particular value of
maximal modeling distance chosen. For a wide variety of
genomes available to us (and for all sequences in SP + TrEMBL),
about one-half of the sequences and one-quarter of the residues
can be assigned to known Pfam families. Given 2,000 families in
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Pfam, this puts the estimate for the total number of protein
domain families at 2,000 / 0.25, or 8,000. This number is com-
patible with other recent estimates3.

Given this estimate of the total number of families, how many
structures will it take to cover these? To cover 90% of all protein
domain sequences, [¥,000 structure determinations are needed
in 2,000 Pfam families using an optimal strategy. Extrapolating
2,000-8,000 families and assuming the Pfam modeling density
can be applied to all of protein space, the total number of struc-
ture determinations required to produce models for 90% of pro-
tein space is 4,000 / 0.25 = 16,000, using the optimal strategy for
target selection (see above). Nonredundant domains structures
already solved ([1L0%, Table 1) are included in this total.

In practice, departures from a strategy that maximizes the
number of models per experimental structure are likely. For
example, simulation of (uncoordinated) target selection, fol-
lowed by deselection of potential targets already covered by an
accurate model, leads to about three times that number —
(50,000 structure determinations (see (iv) in the section on
practical considerations and Fig. 5b).

Conclusions

The principal goal of structural genomics is to construct a com-
plete and accurate map of protein structure space. The map can
be constructed by experimental structures of representatives
from protein families in combination with computational
homology modeling. Here, we have explored comprehensive
structural coverage based on a curated collection of protein fam-
ilies?®. Qualitatively similar results were obtained using other
databases of domain families®®-#. We draw several conclusions
based on simulations in a limited data set of sequence families
and structures, with cautious extrapolation to a much larger
fraction of all natural proteins:

(i) The fraction of protein space for which reasonably accurate
structural modeling is currently possible is relatively small.
Although some structural information is available for domains
in about one-third of sequences from complete genomes, the
fraction of residues in a given genome that can be included in an
accurate model is generally below 10%.

(ii) The number of experimental structure determinations
required to cover protein space increases monotonically with the
desired quality of homology models, where model quality is quan-
tified by the minimal sequence identity used in modeling. The
increase is approximately linear above 40% sequence identity.

(iii) The number of structure determinations required to
cover 90% of protein domains is about four times smaller than
the number required to cover 100%. Coverage of the remaining
10% would come at a disproportionately high cost. Assuming
that at least 30% sequence identity to a structural template is
required for structural modeling, on average eight structure
determinations would be needed to cover 100% of a protein
family versus two structure determinations to cover 90% of a
protein family.

(iv) Large protein families provide a number of alternative
structural targets useful as structural templates. Consequently,
broad structural coverage can be achieved economically with a
relatively small success rate of experimental structure determina-
tion (as low as one in five).

(v) The number of structure determinations required for com-
plete coverage of protein space crucially depends on the strategy
used for the selection of structural targets. For a goal of 90% cov-
erage, a strategy of completely random selection of targets
requires almost seven times more structure determinations than
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a strategy that optimizes the average number of computational
models per experimental structure.

(vi) Improvements in computational modeling methods
would lead to a significant reduction in experimental effort. For
example, a 10% decrease in the threshold needed for accurate
modeling, from 30% to 20% sequence identity, would reduce the
number of experimental structures required by more than a fac-
tor of two.

How soon can the goals of structural genomics be achieved?
We estimate at least 16,000 experimental structure determina-
tions would be required to accurately model almost all proteins
when using an optimal strategy for target selection. However,
unless there is tight coordination of target selection, as many as
50,000 structure determinations may be necessary. A more accu-
rate estimate will be possible once the genome sequences of more
eukaryotes are complete and reliable protein sequences have
been deduced.

The current rate of experimental structure determination is
~50 structures per week* (or 25,000 per decade). However, only
about one in five solved structures is nonredundant in that it
represents a new protein family, as defined by a family radius of
25-30% sequence identity*47. Consequently, only ~10 nonre-
dundant structures are solved per week (or 5,000 per decade).
Over the next few years, the rate of traditional (low-throughput)
structure determination is likely to further increase (since 1990
the rate has increased 10-fold). In addition, emerging structural
genomics projects (both in industry and academia) are aiming
for a total high-throughput production level of thousands of
nonredundant structures per year. Based on these projections, it
is possible that a combination of low-throughput and high-
throughput approaches will yield a near-complete map of pro-
tein structure space in about a decade.

Methods

Family plane projection. The projection of the yeast Ras family
onto a plane (Fig. 3) was obtained using the package SOM_PAK#8
with slight manual adjustments. The sequence YPT6 was chosen as
the center of projection. Note that the projection of a multidimen-
sional space (such as protein sequence space) onto a plane cannot
accurately represent all distances.

Structural coverage of SP+TrEMBL. Structural coverage distribu-
tion of proteins in SP + TrEMBL (Fig. 2) was calculated by PSI-BLAST
sequence profile searches against the PDB#°. For each nonredundant
protein in PDB95 (PDB proteins filtered at 95% sequence identity),
three rounds of iterative PSI-BLAST searches were conducted
against SP + TTEMBL. Sequences with an expectation score (E-value)
<0.001 were collected in each iteration. These sequences were used
as potential structural templates for proteins in SP + TrEMBL.

The rate of false positives was estimated using the SCOP databas-
es of structural domains release 1.37 (ref. 16). For all nonredundant
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sequences representing SCOP structural domains (SCOP filtered at
95% sequence identity), three iterations of PSI-BLAST were run
against the SP + TrEMBL. All SP + TrEMBL sequences hits with
E-scores above 0.001 were collected for each SCOP domain. Two or
more hits to the same region (defined by a 90% overlap) of a SP +
TrEMBL sequence from SCOP domains with different folds are clear-
ly spurious (false positives)?. The percentage of such hits relative to
the total number of hits to SP + TrEMBL sequences was ~3%.

Structural coverage of complete genomes/chromosomes.
Structural coverage of complete genomes was estimated using PSI-
BLAST and FASTA searches. The fraction of genome sequences with
a link to a known fold was calculated by running three rounds of
PSI-BLAST using the PDB95 dataset!®. Only sequences with an E-
value <0.001 and >50 amino acids in length were considered as a
link. The fraction of residues in genomes that could be included in
homology models was estimated by FASTA searches using PDB95.
Only FASTA hits with an E-value <0.001 and sequence identity >30%
to a PDB protein were considered. The BLAST and FASTA searches
were performed using a parallel Beowulf cluster (www.
beowulf.org).

Detection of membrane families in Pfam. The program
TopPreds® was used to detect transmembrane families in Pfam.
Families in which >30% of the sequences had a confident prediction
of at least one transmembrane domain were considered as trans-
membrane families. This criterion is similar to the one used recently
by Elofsson et al.5%.

Coverage of genomes by current Pfam families. Coverage of
different genomes by the Pfam families was calculated using profile
searches with the HMMer package®’. The PVM (parallel virtual
machine) version of HMMer was run on a Beowulf cluster. The fami-
ly specific gathering cutoffs (GA) used in the compilation of Pfam
families were applied.

Greedy coverage algorithm. The following greedy algorithm was
used to estimate the number of experimental structure determina-
tions required to cover each family: (i) For a given maximal model-
ing distance, the number of models that can be built based on each
(remaining) protein in the family (model yield) is calculated. (ii) The
protein with the highest model yield is selected. This protein and
the proteins structurally covered by it are removed from further cal-
culations. (iii) The number of structure determinations required to
cover this family is increased by one. Step (i) is repeated until there
are no proteins left in the family.

Acknowledgments

We thank L. Holm, D. Marks and J. Norvell for discussions and C. Venclosas for
providing CASP template/target sequence identity data. This work was supported
in part by research grants from the US National Institute of Health (NIGMS) and
the Department of Energy to J.M. and C.S.

Received 6 March, 2001; accepted 23 March, 2001

565



Iil © 2001 Nature Publishing Group http://structbio.nature.com

lii © 2001 Nature Publishing Group http://structbio.nature.com

articles

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

. NIGMS  Structural

. Kim, S.H. Shining a light on structural genomics. Nature Struct. Biol. 5, 643-645

(1998).

. Terwilliger, T.C. et al. Class-directed structure determination: foundation for a

protein structure initiative. Protein Sci. 7, 1851-1856 (1998).

. Sali, A. 100,000 protein structures for the biologist. Nature Struct. Biol. 5,

1929-1932 (1998).

. Montelione G.T. & Anderson, S. Structural genomics: keystone for a human

proteome. Nature Struct. Biol. 6, 11-12 (1999).

. Burley, S.K. et al. Structural genomics: beyond the human genome project.

Nature Genet. 23, 151-157 (1999).

. Eisenstein, E. et al. Biological function made crystal clear - annotation of

hypothetical proteins via structural genomics. Curr. Opin. Biol. 11, 25-30 (2000).
Genomics workshop. http://www.nigms.nih.gov/news/
meetings/structural_genomics_targets.html (NIH campus, USA; 1999).

. Govindarajan, S., Recabarren, R. & Goldstein, R.A. Estimating the total number of

protein folds. Proteins 35, 408-414 (1999).

. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304-1351

(2001).

International Human Genome Sequencing Consortium. Initial sequencing and
analysis of the human genome. Nature 409, 860-921 (2001).

Moult, J., Hubbard, T., Fidelis, K. & Pedersen, J.T. Critical assessment of methods
of protein structure prediction (CASP): Round3. Proteins S3, 2-6 (1999).

Martin, A.C., MacArthur, M.W. & Thornton, J.M. Assessment of comparative
modeling in CASP2. Proteins Suppl. 1, 14-28 (1997).

Sanchez, R. & Sali, A. Advances in comparative modeling. Curr. Opin. Struct. Biol.
7,206-214 (1997).

Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence data bank and its
new supplement. TrEMBL. Nucleic Acids Res. 24, 17-21 (1996).

Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acid Res. 25, 3389-3402 (1997).

Murzin, A.G., Brenner, S.E., Hubbard, T. & Chothia, C. SCOP: a structural
classification of proteins database for the investigation of sequences and
structures. J. Mol. Biol. 247, 536-540 (1995).

Holm, L. & Sander, C. Dali/FSSP classification of three-dimensional protein folds.
Nucleic Acids Res. 25, 231-234 (1997).

Orengo, C.A. et al. CATH - a hierarchic classification of protein domain structures.
Structure 5, 1093-1108 (1997).

Hobohm, U., Sander, C., Scharf, M. & Schneider, R. Selection of representative
protein datasets. Protein Sci. 1, 409-417 (1992).

Sanchez, R. & Sali, A. Large-scale protein structure modeling of Saccharomyces
cerevisiae genome. Proc. Natl. Acad. Sci. USA 95, 13597-13602 (1998).

Guex, N., Diemand, A. & Peitsch, M.C. Protein modeling for all. Trends Biochem.
Sci. 24, 364-367 (1999).

Teichmann, S.A., Chothia, C. & Gerstein, M. Advances in structural genomics.
Curr. Opin. Struct. Biol. 9, 390-399 (1999).

Sanchez, R. & Sali, A. ModBase: A database of comparative protein structural
models. Bioinformatics 15, 1060-1061 (1999).

Wolf, Y.I., Brenner, S.E., Bash, P.A. & Koonin, E.V. Distribution of protein folds in
the three superkingdoms of life. Genome Res. 9, 17-26 (1999).

Gerstein, M. Patterns of protein-fold usage in eight microbial genomes: a
comprehensive structural census. Proteins 33, 518-534 (1998).

Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 27,
263-266 (2000).

566

27.

28.
29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.
46.

47.

48.

49.

50.

51.

Holm, L. & Sander, C. Dictionary of recurrent domains in protein structures.
Proteins 33, 88-96 (1998).

Eddy, S.R. Hidden Markov models. Curr. Opin. Struct. Biol. 6, 361-365 (1996).
Wootton, J.C. Non-globular domains in protein sequences: automated
segmentation using complexity measures. Comput. Chem. 18, 269-274 (1994).
Fischer, D. & Eisenberg, D. Finding families for genomics ORFans. Bioinformatics
15, 759-762 (1999).

Ashburner, M. et al. An exploration of the sequence of a 2.9-megabase region of
the genome of Drosophila melanogaster - The Adh region. Genetics 15, 179-219
(1999).

Rubin, M.G .et al. Comparative genomics of the eukaryotes. Science 287,
2204-2215 (2000).

Sonnhammer, E.L.L. & Durbin, R. Analysis of protein domain families in
Caenorhabditis elegans. Genomics 46, 200-216 (1997).

Lin, X. et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis
thaliana. Nature 402, 761-768 (1999).

Mayer, K. et al. Sequence and analysis of chromosome 4 of the plant Arabidopsis
thaliana. Nature 402, 769-777 (1999).

Dunham, I. et al. The DNA sequence of human chromosome 22. Nature 402,
489-495 (1999).

Eddy, S., Mitchison, G. & Durbin, R. Maximum discrimination hidden Markov
models of sequence consensus. J. Comput. Biol. 2, 9-23 (1995).

Wolf, Y.I., Grishin, N.V. & Koonin, E.V. Estimating the number of protein folds and
families from complete genome data. J. Mol. Biol. 299, 897-905 (2000).

Krause, A., Nicodeme, P., Bornber-Bauer, E., Rehmsmeier, M. & Vingron, M. WWW
access to the SYSTERS protein sequence cluster set. Bioinformatics 15, 262-263
(1999).

Heger, A. & Holm, L. Towards a covering set of protein family profiles. Prog.
Biophys. Mol. Biol. 73, 321-337 (2000).

Yona, G., Linial, N., Tishby, N. & Linial, M. A map of the protein space — an automatic
hierarchical classification of all protein sequences. ISMB 6, 212-221 (1998).

Corpet, F, Gouzy, J. & Kahn, D. Recent improvements of the ProDom database of
protein domain families. Nucleic Acids Res. 27, 263-267 (1999).

Tatusov, R.L., Koonin, E.V. & Lipman, D.J. A genomic perspective on protein
families. Science 278, 631-637 (1997).

Wu, C.H., Shivakumar, S. & Huang, H. ProClass protein family database. Nucleic
Acids Res. 27, 272-274 (1999).

Bourne, P.E. Editorial in bioinformatics. Bioinformatics 15, 715-716 (1999).
Holm, L. & Sander, C. Protein folds and families: sequence and structure
alignments. Nucleic Acids Res. 27, 244-247 (1999).

Brenner, S.E. & Levitt, M. Expectations from structural genomics. Protein Sci. 9,
197-200 (2000).

Kohonen, T., Hynninen, J., Kangas, J. & Laaksonen, J. SOM_PAK: The self-
organizing map program package. (Helsinki University of Technology, Helsinki;
1996).

Bernstein, F.C. et al. The Protein Data Bank: a computer based archival file for
macromolecular structures. J. Mol. Biol. 122, 535-542 (1977).

Czero, M., Wallin, E., Simon, I., von Heijne, G. & Elofsson, A. Prediction of
transmembrane a-helices in prokaryotic membrane proteins: the dense
alignment surface method. Protein Eng. 17, 673-676 (1997).

Elofsson, A. & Sonnhammer, E.L.L. A comparison of sequence and structure
protein domain families as a basis for structural genomics. Bioinformatics 15,
480-500 (1999).

nature structural biology ¢ volume 8 number 6 ¢ june 2001



