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Abstract
Understanding the main determinants of protein evolution is a fundamental challenge in biology. Despite many dec
ades of active research, the molecular and cellular mechanisms underlying the substantial variability of evolutionary 
rates across cellular proteins are not currently well understood. It also remains unclear how protein molecular func
tion is optimized in the context of multicellular species and why many proteins, such as enzymes, are only moder
ately efficient on average. Our analysis of genomics and functional datasets reveals in multiple organisms a strong 
inverse relationship between the optimality of protein molecular function and the rate of protein evolution. 
Furthermore, we find that highly expressed proteins tend to be substantially more functionally optimized. These re
sults suggest that cellular expression costs lead to more pronounced functional optimization of abundant proteins 
and that the purifying selection to maintain high levels of functional optimality significantly slows protein evolution. 
We observe that in multicellular species both the rate of protein evolution and the degree of protein functional ef
ficiency are primarily affected by expression in several distinct cell types and tissues, specifically, in developed neu
rons with upregulated synaptic processes in animals and in young and fast-growing tissues in plants. Overall, our 
analysis reveals how various constraints from the molecular, cellular, and species’ levels of biological organization 
jointly affect the rate of protein evolution and the level of protein functional adaptation.
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Introduction
Understanding protein molecular evolution and functional 
adaptation is a long-standing goal of biological research. The 
rate of protein evolution, i.e. the number of amino acid sub
stitutions per protein site per unit time, remains approxi
mately constant across different lineages (Zuckerkandl 
and Pauling 1962, 1965) but varies by orders of magnitude 
across cellular proteins (Dickerson 1971; Koonin and Wolf 
2010). It is currently unclear what are the main biological 
mechanisms underlying this rate variability (Zhang and 
Yang 2015). Alongside elucidating the determinants of pro
tein evolution, another key challenge in molecular and cell 
biology is understanding how and to what extent protein 
function is optimized in the context of different cell types 
and tissues. Previously, it has been observed that protein 
function, such as enzymatic efficiency, appears to be only 
moderately optimized in various species (Bar-Even et al. 
2011). But the origins of this diversity in functional opti
mization between proteins are not understood. Although 
the questions concerning the variability of protein evolu
tionary rates and protein functional optimization have 

been rarely considered together, they are likely to be closely 
intertwined. Because the majority of newly arising muta
tions are harmful to protein function (Futuyma and 
Kirkpatrick 2017), the strength of purifying selection against 
deleterious mutations, and therefore the rate of protein 
evolution, may depend on the level of optimized protein ef
ficiency. Although plausible, the empirical evidence for this 
effect and its magnitude is currently lacking.

We note that evolutionary rates vary both between dif
ferent proteins and also between different amino acid sites 
within a protein. The variability of site-specific evolution
ary rates and their long-term divergence limits are well ex
plained by a combination of structure, stability, and 
function-related factors (Jack et al. 2016; Konate et al. 
2019). The influence of these factors on site-specific evolu
tionary rates can be modeled by considering the purifying 
selection necessary to maintain protein stability and func
tional activity (Echave 2019; Ferreiro et al. 2024). In this pa
per, we focus on a different question, i.e. the variability of 
evolutionary rates between cellular proteins. Protein-spe
cific evolutionary rates correlate only weakly with the aver
age protein contact density (Zhou et al. 2008) and the 

Mol. Biol. Evol. 41(10):msae200 https://doi.org/10.1093/molbev/msae200 Advance Access publication October 21, 2024 1

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/10/m
sae200/7828823 by N

ew
 York State Psychiatric Institute user on 10 D

ecem
ber 2024

https://orcid.org/0000-0001-5031-0013
https://orcid.org/0000-0002-6470-7748
https://orcid.org/0000-0003-4259-8162
mailto:dv2121@cumc.columbia.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/molbev/msae200


overall protein stability (Plata and Vitkup 2018; Usmanova 
et al. 2021). This is likely explained by the fact that the pro
portion of sites with different biophysical properties does 
not vary dramatically across proteins, and that increasing 
protein stability beyond a certain limit is generally not ad
vantageous to protein function (Goldstein 2011).

Multiple genomic, cellular, and molecular correlates of 
protein evolutionary rates have been previously consid
ered (Koonin and Wolf 2006; Rocha 2006), and the best- 
known predictor is the level of protein expression (Pal 
et al. 2001, 2006; Rocha and Danchin 2004). The inverse 
relationship between protein expression and the rate of 
protein evolution, usually referred to as the Expression- 
evolutionary Rate (ER) correlation, shows that highly ex
pressed proteins generally evolve slower than proteins 
with low expression; in other words, the sign of the ER 
correlation is negative. The level of gene expression ex
plains up to a third of the protein evolutionary rate vari
ance in various species, but the biological mechanisms 
underlying the ER correlation are not currently under
stood (Zhang and Yang 2015; Usmanova et al. 2021). 
The ER correlation in animals is usually stronger in neural 
tissues (Drummond and Wilke 2008; Tuller et al. 2008). 
However, the reasons for this interesting observation 
are not clear. At the molecular level, several models 
have been proposed to explain the ER correlation. One 
hypothesis suggested that ER is primarily mediated by in
creased protein stability necessary to prevent effects as
sociated with toxic misfolding of highly expressed 
proteins (Drummond and Wilke 2008). However, mul
tiple studies of various empirical datasets demonstrate 
only a small role played by protein stability in explaining 
the variability of protein evolutionary rates (Plata and 
Vitkup 2018; Biesiadecka et al. 2020; Usmanova et al. 
2021; Wu et al. 2022).

The optimization of protein molecular function 
may not only slow the rate of protein evolution but 
may also underlie the aforementioned ER correlation 
(Rocha 2006; Cherry 2010; Gout et al. 2010). The total le
vel of protein activity in the cell is usually proportional to 
the product of protein functional efficiency and protein 
expression level. Therefore, by optimizing protein effi
ciency organisms can express fewer copies of a protein 
while maintaining its total cellular activity. We refer to 
this mechanism as FORCE, as it is based on the idea of 
protein Functional Optimization to Reduce the Cost of 
Expression. According to FORCE, highly expressed pro
teins are under more stringent selection for functional 
optimization because improving their efficiency allows 
cells to save more resources required for protein produc
tion. Although computer simulations demonstrated 
how protein functional optimization, coupled with pro
tein production costs, can in principle lead to the ER cor
relation (Cherry 2010), it is currently unclear whether 
this mechanism may explain a substantial fraction of 
the evolutionary rate variance across proteins and how 
the cost of expression in various tissues is related to pro
tein functional optimization.

In this study, we address several interrelated scientific 
questions raised above using analyses of multiple 
functional and genomics datasets. First, based on data 
describing enzymes’ catalytic efficiency, we investigate 
the role of functional optimization in constraining pro
tein evolution. We then analyze comprehensive tissue- 
and cell-type-specific transcriptomics data to explore 
what biological and cellular processes are usually 
associated with strong ER correlations in animal and 
plant tissues. Next, we investigate the relationships be
tween protein evolution, functional optimization, and 
expression patterns across tissues in multicellular organ
isms. Overall, our study reveals fundamental biological 
mechanisms underlying the variability of protein 
evolutionary rates and demonstrates how specific mo
lecular and cellular processes affect protein functional 
optimization.

Results
Protein Evolution and Optimization of Protein 
Molecular Function
To explore how the selection for functional optimality 
influences protein evolution it is necessary to consider 
a set of proteins with quantitative measurements of their 
functional efficiency. However, it is usually difficult to 
precisely characterize protein molecular function and es
pecially to quantify its optimality across different pro
teins. Fortunately, based on the Enzyme Commission 
(EC) four-digit classification scheme (Webb 1992), di
verse enzymatic functions have been well defined. 
Moreover, catalytic rates of many enzymes have been 
measured using accurate low throughput biochemical 
experiments (Chen and Vitkup 2007; Wittig et al. 2018; 
Chang et al. 2021). Two biochemical parameters, kcat 
and kcat/KM, that characterize catalytic activities can be 
used to evaluate the functional efficiency of enzymes. 
The first-order kinetic rate constant, kcat , quantifies the 
speed (turnover) of enzymatic reactions at saturating con
centrations of substrates, and the specificity constant, 
kcat/KM, quantifies the second-order reaction rate at ligand 
concentrations substantially lower than the Michaelis con
stant, KM. Enzymes achieve their amazing catalytic efficiency 
primarily by stabilizing transition states of corresponding 
chemical reactions (Abeles et al. 1992). However, depending 
on the chemical properties of substrates and the nature of 
catalyzed biochemical interconversions, it is much easier to 
achieve high kinetic rates for some enzymatic classes than 
for others. This makes the comparison of absolute kinetic 
rates between different enzymatic classes not very inform
ative. Therefore, following previous studies (Davidi et al. 
2018), we quantified the enzymatic functional optimality 
using relative catalytic rates. Specifically, we normalized 
absolute kinetic constants by the highest catalytic con
stants experimentally measured for enzymes from the 
same reaction class, i.e. enzymes sharing all four digits of 
the EC classification. The catalytic rates normalized in 
this way reflect the extent to which the rate constants 
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deviate from the maximal known rates from the same 
enzymatic class. To accurately estimate enzymatic 
efficiencies using the normalized rate constants we only 
considered EC classes with a certain minimal number of 
different enzymes for which kinetic constants were ex
perimentally measured (Methods). As we describe below, 
analyses based on the normalized kinetic rate constants 
(knorm

cat and (kcat/KM)norm) reveal insightful correlations be
tween enzymatic optimality and protein evolutionary 
rates.

To analyze enzymatic functional optimality, we used a 
large collection of experimental kcat and kcat/KM measure
ments available in the Brenda (Chang et al. 2021) and 
Sabio-RK databases (Wittig et al. 2018). The largest num
ber of kinetic constants in these databases were measured 
for enzymes from H. sapiens, A. thaliana, and E. coli. 
Available experimental measurements of kinetic constants 
from other organisms allowed us to estimate functional 
optimality for a substantial number of enzymes from these 
three species. Notably, in all species we observed substan
tial negative correlations between the rate of protein 
evolution, quantified as the rate of non-synonymous 
substitutions between orthologs in closely related 
organisms, dN, and functional optimality, quantified using 
either knorm

cat (Spearman’s r = −0.55, p = 1 · 10−6, for 
H. sapiens; r = −0.63, p = 8 · 10−6, for A. thaliana; 
r = −0.50, p = 1 · 10−2, for E. coli; Fig. 1) or (kcat/KM)norm 

(supplementary fig. S1, Supplementary Material online). 
By analogy to the ER (expression-evolutionary rate) correl
ation, we refer to this correlation as KR, i.e. the correlation 
between the normalized kinetic rate (K) and the rate of 
protein evolution (R). We also evaluated the strength of 
selection against enzyme mutations using the ratio of non- 
synonymous to synonymous substitution rates, dN/dS (Li 
et al. 1985), and found that all enzymes considered in the 
analysis evolve under purifying selection, i.e. with 
dN/dS < 1. In all species, dN/dS was also significantly 

and negatively correlated with the level of functional 
optimality (Spearman’s r = −0.46, p = 6 · 10−5, for 
H. sapiens; r = −0.44, p = 4 · 10−3, for A. thaliana; 
r = −0.46, p = 2 · 10−2, for E. coli; supplementary fig. S2, 
Supplementary Material online). The KR and K-dN/dS cor
relations were observed across a wide range (∼5 orders of 
magnitude) of protein optimality levels, and demonstrate 
that higher optimality of protein molecular function indeed 
usually leads to substantially slower rates of protein evolu
tion. Slower evolutionary rates of proteins with highly opti
mized molecular function likely result from the additional 
constraints required to maintain protein sequence, three- 
dimensional structure, and protein dynamics necessary for ef
ficient function and catalysis (Konate et al. 2019). We note 
that the explanatory power of protein functional optimality 
for predicting evolutionary rates is substantially higher com
pared to multiple other protein biochemical and biophysical 
properties, such as stability, solubility, and stickiness, which 
usually account for only a small percentage (1% to 5%) of 
the evolutionary rate variance (Plata et al. 2010; Plata and 
Vitkup 2018; Usmanova et al. 2021).

The evolutionary pressure to optimize protein function 
should be especially strong for highly expressed proteins, 
as such optimization allows cells to substantially reduce 
the number of expressed proteins. The FORCE model 
also suggests that in multicellular organisms both the pres
sure for functional optimization and the ER correlation 
should be stronger in the tissues with high protein produc
tion costs. Several possible scenarios can make certain cells 
and tissues particularly sensitive to protein expression 
costs. One such scenario involves fast-growing cells where 
protein expression is likely to be a major burden. 
Constitutive protein expression, maintained due to con
stant protein turnover, is itself a major source of cellular 
energy consumption (Buttgereit and Brand 1995; Rolfe 
and Brown 1997). Therefore, another potential scenario 
of cells with high expression costs is either growing or non- 

(a) (b) (c)

Fig. 1. The correlation between protein functional optimality and the rate of protein evolution. Each point in the figures represents an enzyme 
from a) H. sapiens (n = 70), b) A. thaliana (n = 42), and c) E. coli (n = 24). Protein functional optimality was estimated using the normalized 
kinetic constant, knorm

cat , which quantifies the turnover catalytic rate relative to the maximal known rate for the same reaction class. 
Evolutionary rate, dN, was calculated as the number of non-synonymous substitutions accumulated during the divergence of closely related 
orthologs per non-synonymous site. Spearman’s correlation coefficients and P-values are shown in each figure.
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growing cells with substantial and persistent energy expen
ditures. To explore these scenarios, we next investigated 
which tissues and cellular processes are typically associated 
with stronger ER correlations and with more pronounced 
protein functional optimization in multicellular organisms.

The Rate of Protein Evolution and Gene Expression in 
Animals
Previous studies in animals demonstrated (Duret and 
Mouchiroud 2000; Zhang and Li 2004; Wang et al. 2007) 
that proteins highly expressed in the brain generally evolve 
slowly (Fig. 2a, supplementary fig. S3, a to c, Supplementary 
Material online). Thus, we first investigated to what extent 
expression in non-neural tissues further constrains protein 
evolutionary rates. We selected for this analysis several 
model organisms: Homo sapiens (Mele et al. 2015), Mus 
musculus (Söllner et al. 2017), Drosophila melanogaster 
(Leader et al. 2018), and Caenorhabditis elegans (Spencer 
et al. 2011); these organisms span ∼800 million years of di
vergence time, and their mRNA expression data are avail
able across diverse tissues and cell types. Application of 
multivariable regression analysis showed that only a small 
additional fraction (<4%) of the protein evolutionary rate 
variance can be explained by considering expression in all 
tissues compared to expression in neural tissues only 
(supplementary table S1, Supplementary Material online, 
Methods). We observed that the tissues with the weakest 
ER in humans (the testis, blood, and liver) tend to have ex
pression profiles most distant from those in the brain 
(supplementary table S2, Supplementary Material online). 
Furthermore, we found that the strength of tissue-specific 
ER correlations in all species could be largely explained by 

the similarity between gene expression in a particular tis
sue and in the neural tissue with the strongest ER 
(Fig. 2b, supplementary fig. S3, d to f, Supplementary 
Material online), confirming that the expression-based 
evolutionary constraints are primarily dominated by neur
al tissues. We next explored the gene expression breadth 
across tissues (Duret and Mouchiroud 2000; Park and 
Choi 2010), as this characteristic of global gene expression 
was suggested to be another important factor in constrain
ing evolutionary rates in multicellular species (see 
Methods). We found that the expression breadth corre
lates with evolutionary rates stronger than gene expression 
in many non-neural tissues, but substantially weaker than 
expression in neural tissues (supplementary table S1, 
Supplementary Material online). Notably, the expression 
breadth explained little additional variance of evolutionary 
rates (∼1% for all species) when combined in the regres
sion analysis with neural expression.

It has been previously demonstrated that protein ex
pression significantly correlates with the rate of protein 
polymorphisms in bacteria (Feugeas et al. 2016). 
Similarly, based on the analysis of human polymorphism 
data (The 1000 Genomes Project Consortium 2015), 
we observed that expression in neural tissues strongly 
correlates not only with the rate of interspecies protein 
evolution, but also with the per-site frequency of poly
morphisms across proteins in the human population 
(supplementary fig. S4, Supplementary Material online). 
This suggests that expression in neural tissues plays a dom
inant role in constraining protein evolution both between 
and within populations.

We investigated next the ER correlation for groups of 
genes associated with specific biological and cellular 

(a) (b) (c)

Fig. 2. The relationship between expression in human tissues and the rate of protein evolution. a) The correlation between gene expression in the 
brain frontal cortex and evolutionary rates of the corresponding human proteins. Evolutionary rates, dN, were calculated as the number of non- 
synonymous substitutions accumulated during the divergence of closely related orthologs per non-synonymous site (see Methods). Each point 
in the plot represents a human protein (n = 18,619), and the colors represent the point density. b) The correlation between ER values across 
human tissues and the similarity of tissues’ genes expression to the frontal cortex; similar results were obtained for other animals (supplementary 
fig. S3, d to f, Supplementary Material online). The similarity between tissues’ expression profiles was quantified using the Spearman’s correlation. 
Blue points (n = 13) represent human neural tissues, and red points (n = 40) represent non-neural tissues; the linear regression and the 
Spearman’s correlation coefficient were calculated based on all 53 tissues. c) The distribution of the ER correlation strength, based on the brain 
frontal cortex expression, across different Gene Ontology (GO) categories each containing at least 100 human genes; blue vertical line indicates 
the ER correlation of the whole proteome.
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functions. To that end, for each of the ∼1,600 Gene 
Ontology (GO) categories (including molecular functions, 
biological processes, and cellular components) with at 
least 100 human genes, we calculated the ER correlation 
using only genes annotated with each of these GO terms. 
The ER correlation, calculated based on gene expression in 
the brain frontal cortex, was significant for 97% of these 
function-specific gene sets (Fig. 2c). As the expression vari
ance within function-specific gene sets was typically smal
ler compared to the whole proteome, ER within individual 
GO categories (the median ER strength of 0.44) was also 
slightly smaller than for the entire proteome (the ER 
strength of 0.52). Only a very small fraction of GO categor
ies showed non-significant ER correlations. For example, 
almost all genes belonging to the GO term “Oxidative 
Phosphorylation” are highly expressed and have relatively 
low evolutionary rates, while genes belonging to the GO 
term “Olfactory Receptor Activity” have low expression 
and high evolutionary rates; as a result, both of these 
GO terms have non-significant ER (supplementary table 
S3, Supplementary Material online). Despite diverse func
tions represented by different GO categories, the ranking 
of tissues by the ER strength was mostly preserved across 
them, with brain tissues demonstrating the strongest ER 
for 82% of the individual GO categories. Overall, this ana
lysis of GO annotations demonstrates that the ER correl
ation is a general property of almost all protein 
molecular and cellular functions.

To further explore why the strongest ER correlation is ob
served in neural tissues, we first established that this effect is 
not primarily mediated by evolutionary properties of 
neural- or brain-specific genes. The removal of these genes 
from the analysis did not substantially weaken the ER correl
ation in neural tissues; for example, excluding 10% of the 
most neural-specific genes changed the ER correlation 
of the remaining genes by less than 3% in all species 
(Methods). Moreover, even for the subsets of genes most 
specific to non-neural tissues, the ER correlations calculated 
based on their expression in the brain were almost always 
substantially stronger than based on expression in non- 
brain tissues (supplementary figs. S5 and S6, 
Supplementary Material online; Methods). Strong ER 
correlations are also unlikely to result from the difference 
in the number of expressed genes in various tissues. 
Setting the abundance of lowly-expressed genes to zero, 
in order to equalize the number of expressed genes across 
tissues, decreased the ER correlations by ∼1% in the 
neural tissues and also preserved the ranking of tissues 
by ER (Spearman’s r > 0.98, p < 4 · 10−12 for all species; 
Methods). Because it was previously demonstrated that 
the fraction of essential genes is similar across mouse tissues 
(Cardoso-Moreira et al. 2019), the observed differences 
in the ER correlation are also unlikely to originate from 
the higher essentiality of brain-expressed genes. Therefore, 
the strong correlation between evolutionary rate and 
gene expression in neural tissues is likely to be mediated 
not by expression of brain-specific genes themselves 
but by some inherent functional properties of neural 

cells that affect evolution of all proteins expressed in 
these cells.

The Role of Neuronal Gene Expression in 
Constraining Protein Evolution
To investigate the cellular properties that may underlie the 
ER correlations we took advantage of cell-type-specific 
brain expression data (Davie et al. 2018; Saunders et al. 
2018; Zeisel et al. 2018; Sugino et al. 2019). We first ana
lyzed the single-cell transcriptome dataset by Zeisel et al. 
(2018); the dataset covers hundreds of cell types including 
neurons and non-neurons across the entire mouse brain 
(Methods). Consistent with previous analyses (Hu et al. 
2020), we found that neurons generally have significantly 
stronger ER correlations than non-neuron brain cells 
(Mann–Whitney test p = 1 · 10−20; Fig. 3a), with the ER 
correlations in central nervous system (CNS) neurons sig
nificantly stronger than in neurons of the peripheral ner
vous system (PNS) (Mann–Whitney test p = 6 · 10−10). 
Notably, the strength of the ER correlation varied between 
different types of neurons, and we leveraged this variability 
to explore which specific cellular functions are usually up
regulated in the neuron types associated with stronger ER 
correlations. To that end, we ranked all mouse genes based 
on how strongly their individual expression correlates with 
the ER strength across all CNS neuron types. We then used 
the gene set enrichment analysis (GSEA) (Subramanian 
et al. 2005) to identify functional GO categories that 
were associated with higher gene rankings (see Methods, 
supplementary table S4, Supplementary Material online). 
The GSEA analysis showed that neurons with stronger 
ER correlations tend to have higher expression of genes as
sociated with synaptic functions and related cellular pro
cesses (Fig. 3b). An alternative GSEA approach, which 
ranked mouse genes based on the differential expression 
between CNS neuron types with high and low ER strengths, 
also implicated similar GO categories (Methods, 
supplementary table S4, Supplementary Material online). 
Consistent with the GSEA results, we observed a strong cor
relation between the average expression of synaptic genes 
and the strength of ER correlation across neuron types 
(Spearman’s r = 0.87, p = 2 · 10−42; Fig. 3c). We again 
note that the correlation patterns identified by the GSEA 
analysis were not due to the synaptic genes themselves, 
as removing synapse-associated genes or genes from all 
upregulated GO categories from the analysis, i.e. using 
these genes only in ranking but not in the ER calculations 
across neuron types, did not substantially change the 
GSEA results (Methods, supplementary table S4, 
Supplementary Material online). Instead, it is likely that in
nate cellular properties of neurons with strongly upregu
lated synaptic functions make evolutionary rates of all 
proteins especially sensitive to expression levels in these 
cell types.

Next, we confirmed the correlation between the expres
sion of synaptic genes and the ER strength using several in
dependent datasets. First, we analyzed two additional 
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comprehensive cell-type-specific transcriptomes of the 
mouse brain. One transcriptome was obtained using 
single-cell sequencing (Saunders et al. 2018), while the 
other was obtained using the bulk RNA sequencing of 
cell populations distinguished by their genetic and ana
tomical markers (Sugino et al. 2019). The GSEA analysis ap
plied to these datasets confirmed the significant 
association between the upregulation of synapse-related 
functions and the strength of ER (supplementary fig. S7, 
Supplementary Material online, supplementary table S4, 
Supplementary Material online). We also analyzed a 
region-specific gene expression dataset that covers the en
tire mouse brain (∼100 brain regions) and which was ob
tained using in situ hybridization (Lein et al. 2007). This 
dataset allowed us to correlate the ER strength with brain 

regions’ physiological properties that were measured in 
the same three-dimensional coordinate system describing 
the mouse brain (Erö et al. 2018; Murakami et al. 2018; Zhu 
et al. 2018). Interestingly, we found that the ER strength 
was strongly correlated with the density of synapses 
(Zhu et al. 2018) across the mouse brain (Spearman’s 
r = 0.66, p = 2 · 10−13), but not with the density of neu
rons (Erö et al. 2018; Spearman’s r = −0.051, p = 0.6) or 
the overall cellular density (Murakami et al. 2018; 
Spearman’s r = −0.15, p = 0.14) (supplementary fig. S8, 
Supplementary Material online). Finally, we analyzed a 
single-cell expression dataset from the D. melanogaster 
brain (Davie et al. 2018), and observed that in the non-ver
tebrate species protein evolutionary rates also correlate 
significantly stronger with expression in neurons than in 

(a)

(d) (e) (f)

(b) (c)

Fig. 3. Functional properties of mouse brain cells and developmental stages that are associated with stronger ER correlations. a) The strength of 
ER correlations across different cell types in the mouse nervous system (n = 207). CNS neurons are shown in blue, PNS neurons in purple, and 
non-neuronal brain cells in red. The box plots show the median, the upper and lower quartiles of the ER strength, and the whiskers show the 
minimum and maximum values excluding outliers; P-values were calculated using the Mann–Whitney U test. b) The GO terms associated with 
stronger ER in mouse CNS neurons. The top 10 GO terms ranked by the strength of the normalized enrichment score (see Methods) are shown; 
False Discovery Rate (FDR)-corrected P-values < 10−5 for all presented GO terms. The complete list of significantly associated GO terms is pro
vided in the supplementary table S4, Supplementary Material online. c) The correlation between the average expression of genes from the 
Synapse GO term (GO:0045202) and the ER strength across CNS cell types; each point in the figure represents a mouse CNS neuron type 
(n = 132). d) The strength of ER correlation for mouse tissues across prenatal and postnatal developmental stages. Color lines represent different 
organs, the x-axis shows mouse developmental stages, and the left y-axis shows the ER correlation strength. The right y-axis shows the fraction of 
essential genes (represented by the dashed black line) significantly expressed in the brain at different developmental stages. e) The correlation 
between the similarity of samples’ gene expression profiles with the postnatal brain expression (x-axis) and the ER strength across mouse organs 
and developmental stages (y-axis); the similarity between expression profiles was quantified using Spearman’s correlation. Postnatal brain ex
pression was calculated as the average over all corresponding postnatal samples. The color of each dot (n = 84) represents an organ according to 
the legend in (d), and the size of each dot represents the developmental stage, with smaller dots corresponding to earlier developmental stages. 
f) The correlation between the average expression (x-axis) of genes from the Synapse GO term (GO:0045202) and the ER strength (y-axis); each 
point in the figure represents a different mouse brain developmental stage (n = 14).
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other brain cells (Mann–Whitney test p = 9 · 10−4; 
supplementary fig. S7g, Supplementary Material online). 
The GSEA analysis applied to the D. melanogaster expres
sion dataset also showed a significant association between 
the ER strength and the upregulation of synaptic and 
neuropeptide signaling functions, indicating the generality 
of these patterns in diverse species (supplementary fig. S7, 
h and i, Supplementary Material online; supplementary 
table S4, Supplementary Material online).

Functional properties of cells and their gene expression 
profiles vary not only between adult tissues and cell types 
but also across developmental stages, with especially rapid 
changes observed during embryogenesis. To investigate 
how the strength of ER changes during development, we 
analyzed a temporal expression dataset that covers mul
tiple mouse organs and includes both prenatal and post
natal developmental periods (Cardoso-Moreira et al. 
2019). In agreement with previous observations (Hu 
et al. 2020), we found that expression in neural tissue be
comes more strongly correlated with protein evolutionary 
rates as embryonic development progresses (Fig. 3d). The 
maximal ER in the brain was reached around birth, without 
substantial further changes during the postnatal develop
mental stages. Qualitatively different behaviors were ob
served for non-neural tissues, for which the ER correlation 
monotonically decreased from the early to late develop
mental stages (Fig. 3d). This pattern likely arises because tis
sues’ expression profiles are more similar during the early 
developmental stages, but continuously diverge as the de
velopment progresses (Cardoso-Moreira et al. 2019). As in 
the analysis of adult animal tissues (Fig. 2b, 
supplementary fig. S3, d to f, Supplementary Material on
line), we found that the ER strength calculated for samples 
from different organs and different developmental stages is 
highly correlated with the similarity of samples’ gene expres
sion to expression in the adult brain (Fig. 3e).

We next investigated the ER variability across brain de
velopmental stages. We performed the GSEA analysis, 
which showed that the GO terms associated with stronger 
ER were primarily the functional categories also associated 
with stronger ER in adult neurons (supplementary table S4, 
Supplementary Material online). Specifically, we found 
that the ER strength strongly correlates with synaptic 
gene expression across the developmental stages 
(Spearman’s r = 0.75, p = 2 · 10−3; Fig. 3f). As we stated 
previously, the strong ER correlation in the developed 
brain is unlikely to be mediated by gene essentiality. 
Essential genes (Koscielny et al. 2014), on average, evolve 
twice slower than non-essential genes (Rocha and 
Danchin 2004), but demonstrate substantially weaker ER 
correlations (supplementary fig. S9, Supplementary 
Material online). Interestingly, similar to the ER of non- 
essential genes, the ER of essential genes in the brain is 
weaker during early development (supplementary fig. S9, 
Supplementary Material online), despite the fact that es
sential genes are more highly expressed at those develop
mental stages (Cardoso-Moreira et al. 2019) (Fig. 3d, 
dashed black line, Methods).

Overall, these results demonstrate that protein evolu
tionary rates in animals correlate more strongly with 
gene expression in developed neurons, especially in neu
rons with upregulated molecular and cellular functions 
related to synaptic activities. Our analysis also suggests 
that this effect is not primarily due to synaptic genes 
themselves, but that it is likely mediated by the func
tional properties of neurons in which synapse-related 
genes are highly expressed. Due to the generality of 
these results in animals, it is interesting to investigate 
cellular processes and functions that primarily affect 
protein evolutionary rates in multicellular organisms 
without neural tissues. Thus, we next considered the 
tissue-specific ER correlations and associated cellular 
processes in plants.

The Rate of Protein Evolution and Gene Expression in 
Plants
We investigated the ER correlations in plants using multi- 
tissue RNA-seq data from three angiosperm species: Zea 
mays (corn) (Stelpflug et al. 2016), Arabidopsis thaliana 
(Klepikova et al. 2016), and Glycine max (soybean) (Shen 
et al. 2014). As was reported previously, the similarity of 
plant tissues’ transcriptomes often reflects not only the re
latedness of their morphological origins but also the simi
larity of their developmental stages (Klepikova et al. 2016; 
Stelpflug et al. 2016). We confirmed this observation in the 
considered plant species based on hierarchical clustering 
(Methods) of the tissues’ expression data (Fig. 4). This ana
lysis resulted in distinct expression clusters representing 
samples from roots, leaves, stems, seeds, flowers, meris
tems, and also clusters that included multiple young or 
growing tissues of diverse origin. For example, the upper
most cluster in the dendrogram for corn (top in Fig. 4a) 
combines the samples from seedlings, root axes, leaf 
buds, developing seeds or flowers (see supplementary 
table S2, Supplementary Material online for samples to 
cluster assignments). In contrast to animals, in plants we 
did not observe morphologically similar tissue types that 
have universally strong ER correlations (Fig. 4). However, 
plants’ samples with stronger ER tended to include young 
and growing tissues, while senescent tissues always exhib
ited relatively low ER correlations. Similar to animals, the 
observed patterns were not primarily due to the genes spe
cific to growing plant tissues, as removal of such genes did 
not substantially affect the strength of ER (Methods); for 
example, removing 10% of the genes most specific to the 
growing tissues changed the ER correlations of the remain
ing genes in the plant tissues with strong ER by less than 
3%. This analysis again suggests that the functional proper
ties of fast-growing plant tissues likely make protein evolu
tionary rates especially sensitive to expression in the 
corresponding cells and organs.

To understand the functional properties of plant cells 
associated with strong ER, we again used the GSEA enrich
ment analysis. In all three considered plant species we 
found that similar GO categories are usually associated 
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with stronger ER correlations (supplementary fig. S10, 
Supplementary Material online; supplementary table S4, 
Supplementary Material online). These upregulated GO 
terms primarily represent growth-related functional cat
egories, such as translation, cell wall biosynthesis, 
and microtubule cytoskeleton organization/movement 
(Fig. 5a). The implicated functional categories suggest 
that strong ER correlations in plants are usually associated 
with cellular elongation and growth. The growth of plant 
organs is known to be initiated in the zone of undifferen
tiated meristematic cells and consists of three consecutive 
stages: cells division, elongation and differentiation (Taiz 
et al. 2015). Therefore, we used the distinct gene markers 
of these growth stages (Huang and Schiefelbein 2015) to 
further investigate how the marker’s average gene expres
sion correlates with ER across tissues (Methods). This 
analysis demonstrated that expression of the cellular 
elongation markers strongly correlates with the ER 
strength in all three plant species (Spearman’s r = 0.72, 
p = 8 · 10−16, for corn; r = 0.75, p = 3 · 10−15, for 
Arabidopsis; r = 0.83, p = 4 · 10−7, for soybean; Fig. 5, b 

to d). The expression of the cell division markers showed 
a weaker and less significant correlation with the ER 
strength (Spearman’s r = 0.48, p = 1 · 10−6, for corn; 
r = 0.15, p = 0.2, for Arabidopsis; r = 0.36, p = 0.08, 
for soybean; supplementary fig. S11, Supplementary 
Material online). Finally, the correlation between the 
cell differentiation markers and ER was either not signifi
cant or was significant in the direction opposite to the 
other two markers (Spearman’s r = −0.63, p = 2 · 10−11, 
for corn; r = −0.02, p = 0.9, for Arabidopsis; r = −0.32, 
p = 0.1 for soybean), confirming a substantial decrease 
of the ER strength for plant tissues entering the differen
tiation stage.

While different cellular functions are associated with 
strong ER correlations in animals and plants, our results sug
gest that the strongest correlations are usually observed in 
tissues with high expression costs. In plants, our analysis im
plicates cells from various tissues that are rapidly growing, 
and therefore likely prioritizing their carbon and energy re
sources for novel protein production. In animals, brain syn
aptic activity requires a substantial and persistent energy 

(a) (b) (c)

Fig. 4. The relationship between gene expression in plant tissues and the rate of protein evolution. The data are shown for transcriptomes of a) 
corn (Stelpflug et al. 2016), b) Arabidopsis (Klepikova et al. 2016), and c) soybean (Shen et al. 2014). Each point in the figure represents a plant 
tissue sample, point colors represent different plant tissue types described in the legend; senescent samples are shown as black-edged circles. The 
x-axis represents the strength of the ER correlation. The left panel of each plot shows the hierarchical clustering dendrogram of the plant tran
scriptomes, with the clustering distance metric calculated as one minus the squared Pearson’s correlation coefficient between samples’ expres
sion profiles. The horizontal dashed lines separate major clusters of the dendrogram. The vertical gray scale colormaps on the left side of the plots 
show the scaled average expression of cell growth markers in the corresponding plant tissues. The genes strongly upregulated in fast-growing 
root cells (Huang and Schiefelbein 2015) were used as the growth markers for Arabidopsis (see Methods); the orthologs of the Arabidopsis 
growth markers were used as the growth markers for corn and soybean.
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supply (Harris et al. 2012). Thus, it may be particularly im
portant to reduce the protein expression burden for neu
rons with high densities of synaptic connections. Having 
identified the tissues with the strongest ER correlations, 
we next investigated to what extent the correlation be
tween protein functional optimality and evolutionary rate 
may mediate the ER correlation and its variability across 
tissues.

The Role of Protein Functional Optimization in 
Mediating the ER Correlation
To investigate the relationship between the optimization of 
protein function and the ER correlation, we considered next 
the sets of H. sapiens, A. thaliana, and E. coli enzymes with 
estimated levels of their functional optimality (Fig. 1). First, 
we confirmed that for the enzymes from these sets the ER 
correlation is significant and similar in strength to the 
ER correlation for the entire proteomes (Spearman’s 
r = −0.64, p = 3 · 10−9, for H. sapiens; r = −0.61, 
p = 2 · 10−5, for A. thaliana; r = −0.75, p = 3 · 10−5, for 
E. coli, supplementary fig. S12, Supplementary Material on
line). This result suggests that the mechanisms underlying 
the whole-proteome ER correlation also play a similar role 

in the evolution of these specific sets of proteins. The 
FORCE mechanism of the ER correlation proposes that high
ly expressed proteins are more functionally optimized to re
lieve the burden associated with their production costs. 
Consistent with this model, we observed in all three species 
significant correlations between protein expression level 
and protein functional optimality (Spearman’s r = 0.52, 
p = 4 · 10−6, for H. sapiens; r = 0.45, p = 3 · 10−3, for A. 
thaliana; r = 0.46, p = 2 · 10−2, for E. coli; Fig. 6, a to c). By 
analogy to the ER and KR correlations described above, 
we refer to this revealing correlation as EK, i.e. the correl
ation between expression (E) and kinetic constants (K).

Our analyses of protein expression across tissues demon
strated that the rate of protein evolution is especially sensi
tive to expression in several specific cell types and tissues, 
such as neurons in animals (Fig. 2) and actively growing tis
sues in plants (Fig. 4). The tissues most sensitive to expression 
costs are likely to exert the highest selective pressure to op
timize protein function. As a result, both the EK and ER cor
relations should be stronger in tissues with high expression 
costs and weaker in other tissues. In agreement with this pre
diction, in both animals and plants we observed significant 
correlations between the strengths of ER and EK calculated 
across tissues (Spearman’s r = 0.60, p = 2 · 10−6, for 

(a)

(b) (c) (d)

Fig. 5. Functional properties of plant tissues that are associated with stronger ER correlations. a) GO categories significantly associated with 
stronger ER correlations in the three considered plant species: corn, Arabidopsis, and soybean. Normalized enrichment scores for the top 10 
representative GO terms are shown; FDR-corrected P-values <0.05 for all presented GO terms. The complete list of upregulated GO categories 
is provided in supplementary table S4, Supplementary Material online. b to d) The relationship between the average expression of the elongation 
growth markers and the tissue-specific ER strength for b) corn (n = 92), c) Arabidopsis (n = 79), and d) soybean (n = 25). Each point in the figure 
represents a plant tissue, and point colors represent the tissue types described in the legend.
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H. sapiens; r = 0.66, p = 5 · 10−11, for A. thaliana; Fig. 6, d and 
e), with the highest correlations observed in the brain for H. 
sapiens and in fast-growing tissues for A. thaliana.

Finally, we quantitatively investigated what fraction of 
the ER correlation can be explained by the variability in 
protein functional optimality. To that end, we used the 
semi-partial correlations to calculate the unique and 
shared contributions of two independent variables, ex
pression and protein functional optimality, in explaining 
the variance of protein evolutionary rates. This analysis 
demonstrated that after accounting for protein func
tional optimality, quantified using knorm

cat , the fraction of 
the evolutionary rate variance explained by expression 
substantially decreases: by ∼1/2 for H. sapiens (from 
41% to 17%), ∼2/3 for A. thaliana (from 38% to 14%), 
and ∼1/3 for E. coli (from 56% to 34%); similar results 
were obtained for the multicellular species when con
trolling for (kcat/KM)norm (supplementary fig. S13, a to 
c, Supplementary Material online). The observed de
creases in the variance explained are due to the shared 
fractional contribution of protein expression and 

functional optimality to the variance of evolutionary 
rate, and the remaining fractions represent their unique 
contributions (Fig. 7). The slowing of evolutionary rates 
of highly expressed proteins is likely to be mediated by 
stronger selection to maintain functionally optimal pro
tein sequences. Indeed, in all three species, about half of 
the correlation between expression and dN/dS can be 
also attributed to the functional efficiency as an inter
mediate variable (supplementary fig. S13, d to i, 
Supplementary Material online). The large explanatory 
effect sizes of protein functional optimality in explaining 
the evolutionary rate variability are especially remark
able because our knorm

cat -based optimality estimations re
lied on a simple heuristic normalization procedure. We 
note that the fractions of ER unexplained by knorm

cat do 
not necessarily indicate that they are unrelated to pro
tein function, because kinetic constants, such as kcat, 
are clearly not the only parameters optimized in protein 
evolution. The refinements of multiple other functional 
properties, such as the efficiency of allosteric regulation, 
covalent modification, and protein–protein binding, 

(a)

(d) (e)

(b) (c)

Fig. 6. The relationship between the level of protein functional optimality, expression, and the rate of protein evolution. a to c) The correlation 
between protein expression level and protein functional optimality (the EK correlation). Each point on the plots represents an enzyme from 
a) H. sapiens (n = 70), b) A. thaliana (n = 42), and c) E. coli (n = 24). Protein functional optimality was estimated using the normalized kinetic 
constant, knorm

cat , which quantifies the turnover catalytic rate relative to the maximal known rate for the same reaction class. For multicellular 
species, the expression in the tissue with the strongest ER for enzymes was used (the brain basal ganglia for H. sapiens and the seedling root 
for A. thaliana). (d, e) The relationship between the ER correlation (the correlation between expression and evolutionary rate) and the EK cor
relation (the correlation between expression and protein functional optimality, knorm

cat ). Each point represents a tissue from d) H. sapiens (53 tis
sues) or e) A. thaliana (79 tissues); the strength of ER and EK correlations were quantified across tissues using Spearman’s correlation.
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may further increase the fraction of ER explained by 
functional optimality. Taken together, these results dem
onstrate not only an important role played by the opti
mization of protein efficiency in constraining protein 
evolution (Fig. 1), but also its major role in mediating 
the ER correlation.

Discussion
The presented results demonstrate that maintaining opti
mal protein function, for example high values of enzyme 
kinetic constants, imposes substantial constraints on pro
tein sequences. This effect (the KR correlation, Fig. 1) sig
nificantly decreases the rate of amino acid substitutions 
and thus slows down protein evolution. Our analysis of 
empirical data shows that the variability in functional op
timality across proteins explains a substantial fraction 
(30% to 40%) of the protein evolutionary rate variance 
in such diverse organisms as H. sapiens, A. thaliana, and 
E. coli. We note that in addition to the overall protein func
tional optimization other function- and structure-specific 
factors are likely to influence the rate of protein evolution 
(Wolf et al. 2008, 2010).

Our results suggest that a functional model of protein 
evolution (Fig. 8), which is based on the KR correlation 
and the FORCE mechanisms, may explain up to half of 
the ER correlation between the rate of protein evolution 
and protein expression. In addition to the KR correlation, 
we found that protein expression and functional efficiency 
also correlate with each other (the EK correlation, Fig. 6, a 
to c). The EK correlation likely emerges because both pro
tein efficiency and expression level tend to increase to
gether to meet the demand for the total protein activity 
in the cell. Because protein expression is usually associated 
with certain fitness costs (Dong et al. 1995; Dekel and Alon 
2005; Plata et al. 2010; Scott et al. 2010; Kafri et al. 2016), 
increasing the total protein activity exclusively through 

upregulation of protein expression is disadvantageous. 
On the other hand, the functional optimization of protein 
sequence is limited by the entropic factor, i.e. there are 
many more sequences with sub-optimal than with optimal 
function. Balancing between the expression cost and the 
mutation-selection balance for the functional optimiza
tion, the cell satisfies the protein activity demand via 
both avenues simultaneously. As a result, proteins with 
high cellular activity demand tend to have both high ex
pression and high functional efficiency, while proteins 
with low demand tend to have low expression and low 
functional efficiency. Because protein expression positively 
correlates with functional optimality (the EK correlation), 
and functional optimality decreases the rate of protein 
evolution (the KR correlation), highly expressed proteins 
usually evolve slowly, i.e. display the ER correlation 
(Fig. 8). Our results also show that protein functional op
timality and evolutionary rate are primarily affected by ex
pression in the same tissues and cell types, likely to be the 
ones most sensitive to expression costs (Fig. 6, d and e).

We note that the functional model of protein evolution 
(Fig. 8) is consistent with different origins of the protein ex
pression costs and their various combinations (Cherry 
2010). The key and unique component of the FORCE 
mechanism is not the existence of an expression cost, 
which is also a requirement of other evolutionary models 
(Drummond and Wilke 2008), but an essential role played 
by the optimization of protein functional efficiency that 
constrains protein sequence and slows protein evolution. 
As described above, the total protein activity in the cell 
can be increased by either the optimization of protein ef
ficiency or by upregulation of protein expression (Parsch 
et al. 2000), and there is usually a saturating relationship 
between the total protein activity in the cell and species’ 
fitness (Kacser and Burns 1981; Hartl et al. 1985). 
Consistent with the FORCE mechanism, previous 
experimental studies demonstrated that many coding 

(a) (b) (c)

Fig. 7. The fractions of the evolutionary rate variance explained by protein functional optimality and expression. The Venn diagrams show for a) 
H. sapiens, b) A. thaliana, and c) E. coli, the fractions of the evolutionary rate variance explained by expression and protein functional optimality; 
functional optimality was quantified using the normalized kinetic constant knorm

cat . The unique and shared contributions were estimated using 
semi-partial correlations (see Methods). The two-way intersections (dark red and dark blue) represent the unique contributions of expression 
and functional optimality, respectively, and the three-way intersection (purple) represents the shared contribution of these two factors. For 
multicellular species, the expression in the tissue with the strongest ER for enzymes was used in the analysis (the brain basal ganglia for H. sapiens 
and the seedling root for A. thaliana). 
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mutations in enzymes have only small fitness effects when 
protein abundance is high, as a mutation-induced decrease 
in functional efficiency can be buffered when the total pro
tein activity is close to saturation (Jiang et al. 2013; Wu 
et al. 2022; Cisneros et al. 2023). But the same coding mu
tations may significantly affect fitness when protein abun
dance is low, and thus protein optimality and protein 
expression level are both important for maintaining the to
tal protein activity in the cell.

We find that in multicellular organisms, the strength of 
the ER correlation and the pressure to optimize protein 
function are usually associated with certain cell-specific 
processes, such as synaptic activities in animals (Fig. 3) 
and growth-related processes in plants (Fig. 5). 
Functional optimization may help to relieve the expression 
burden in plants’ tissues with rapid cellular growth and ac
tive translation. Fast-growing plant cells experience a high 
demand for ATP and carbon required for biosynthesis. For 
example, it was estimated that in A. thaliana fast-growing 
leaves spend ∼40% of their ATP on protein production, 
while slow-growing leaves spend ∼3 times less (Li et al. 
2017). Similarly, energetic and morphological properties 
of animal neurons, especially neurons with upregulated 
synaptic activities, are likely to result in particularly high 
costs of protein expression. Multiple evidence suggest 

that the brain and neurons are highly sensitive to energy 
limitations. The brain is known to oxidize glucose almost 
completely (Mergenthaler et al. 2013), and the glucose up
take per unit mass in the brain is two times higher than in 
other tissues (Lu et al. 2022). Furthermore, the majority 
(up to ∼80%) of neuronal ATP is used for synaptic repolar
ization (Alle et al. 2009; Harris et al. 2012; Magistretti and 
Allaman 2015). In addition to substantial energy consump
tion, large volumes of neuronal dendritic trees may pro
vide a protein trafficking burden as protein expression 
primarily takes place in the soma (Maday et al. 2014). 
While one mechanism to reduce expression costs in neu
rons is to optimize protein function, another general 
mechanism is to decrease the rate of protein turnover. 
Indeed, the rate of protein turnover is substantially slower 
in the brain compared to other tissues (Fornasiero et al. 
2018), and it is slower in neurons compared to glial cells 
(Dörrbaum et al. 2018). Slower evolution of proteins highly 
expressed in the brain may also lead to slower evolution of 
other cellular systems and properties. For example, it has 
been demonstrated that cellular transcriptome (Brawand 
et al. 2011; Chen et al. 2019), metabolome (Ma et al. 
2015), and tissue-specific codon usage (Plotkin et al. 
2004) also evolve significantly slower in the brain com
pared to other tissues.

Fig. 8. Functional model of protein evolution. The figure illustrates the functional model of protein evolution and the Functional- 
Optimization-to-Reduce-the-Cost-of-Expression (FORCE) mechanism that are supported by the presented data. Gray rectangles represent 
molecular and cellular properties and processes. Black lines indicate stimulatory (arrows) and inhibitory (T-bars) effects. The bidirectional 
blue arrows indicate the key experimentally observed correlations: the negative ER correlation between expression and evolutionary rate, 
the negative KR correlation between protein functional optimality and evolutionary rate, and the positive EK correlation between expression 
and protein functional optimality. A higher demand for the total protein activity simultaneously leads to higher protein expression and in
creased functional optimality (the EK correlation). The requirement to maintain high functional optimality, in turn, constrains protein se
quence and slows the rate of protein evolution (the ER correlation). Furthermore, particularly high costs of protein expression in certain 
tissues and conditions facilitate the optimization of protein functions and lead to stronger EK and ER correlations in the tissues most sensitive 
to protein expression costs.
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Proteins, cells, and tissues of multicellular organisms do 
not function in isolation, but rather as an integrated 
system that insures proper physiological responses and 
species’ survival. Therefore, it is of keen interest to under
stand the optimization of individual biological compo
nents, such as proteins, in the context of complex 
biological systems. We and others have previously investi
gated the influence of cellular protein–protein and meta
bolic networks on the evolution of individual proteins 
(Fraser et al. 2002; Vitkup et al. 2006). Our present 
work reveals the striking variability of protein functional 
optimization and explains how that variability affects pro
tein evolution. We hope that our study will be an import
ant step toward the development of an integrated 
functional theory of protein evolution which will jointly 
consider the effects associated with protein functional op
timization and structural adaptation, expression patterns 
across tissues and conditions, and population demograph
ic history.

Methods
Gene Expression Datasets Used in the Analyses
The following transcriptomes were used in this study: tissue- 
specific transcriptomes of Homo sapiens (Mele et al. 2015), 
Mus musculus (Söllner et al. 2017), Drosophila melanogaster 
(Leader et al. 2018), Caenorhabditis elegans (Spencer et al. 
2011), Arabidopsis thaliana (Klepikova et al. 2016), Zea 
mays (Stelpflug et al. 2016) and Glycine max (Shen et al. 
2014); cell-type-specific transcriptomes of the brain of M. 
musculus (Saunders et al. 2018; Zeisel et al. 2018; Sugino 
et al. 2019) and D. melanogaster (Davie et al. 2018); region- 
specific transcriptome of the M. musculus brain (Lein et al. 
2007); tissue-specific transcriptome at different developmen
tal stages of M. musculus (Cardoso-Moreira et al. 2019), 
and the transcriptome of Escherichia coli measured in 
log phase growth (McClure et al. 2013). Data sources, num
ber of samples, sequencing technique, and specific details 
on data extraction for each dataset are provided in 
supplementary table S5, Supplementary Material online. In 
our analyses, we only used expression levels for the chromo
somal protein-coding genes. For all single-cell datasets, we 
also excluded cell-type clusters with low expression resolution 
and used only clusters with at least 200,000 UMI counts. We 
applied the transcript per million (TPM) normalization for 
the tissue-specific transcriptomes of H. sapiens, M. musculus, 
D. melanogaster, C. elegans, and E. coli before subsequent ana
lyses. We used the trimmed mean of M-values (TMM) nor
malization method (Robinson and Oshlack 2010) available 
in the edgeR package (Robinson et al. 2010) for all plant 
tissue-specific transcriptomes and for all animal single-cell 
transcriptomes to allow comparisons across samples in 
such analyses as the GSEA.

Calculation of Evolutionary Rates
We used the rate of non-synonymous substitutions, dN, as a 
measure of protein evolutionary rate. To calculate dN values 

for pairs of orthologous proteins, we utilized the PAML pack
age (Yang 1997). We identified orthologous proteins as bidir
ectional best hits in pairwise local alignments between 
proteins from two species. The pairwise alignments were 
generated using Usearch (Edgar 2010), and included only 
protein pairs for which the corresponding alignments had 
E-value <10−6, were at least 30 amino acids long, and 
covered at least 70% of the length of both proteins. The 
orthologous pairs of species used in our analysis were: Mus 
musculus—Homo sapiens, Drosophila melanogaster— 
Drosophila yakuba, Caenorhabditis elegans—Caenorhabditis 
briggsae, Zea mays (corn)—Oryza sativa (rice), Glycine max 
(soybean)—Medicago truncatula, and Escherichia coli— 
Salmonella enterica. The coding sequences for the proteins 
in each species were obtained from the Ensembl database 
(Cunningham et al. 2022).

For H. sapiens and A. thaliana, we used a multi-species ap
proach to obtain accurate estimates of protein evolutionary 
rate. Notably, the standard procedure which uses only a pair 
of closely related species did not find reliable orthologs for a 
fraction of proteins, thus precluding us from inferring their 
evolutionary rates. To increase the number of orthologs in 
the analysis, we calculated the average evolutionary rate 
for H. sapiens and A. thaliana (primary species) proteins 
based on dN values obtained from multiple pairs of evolu
tionary related species, while also allowing protein orthologs 
in some species to be missing. Specifically, we used Gorilla 
gorilla, Pongo abelii, Macaa mulatta, Saimiri boliviensis 
boliviensis, and Mus musculus as the secondary species for 
Homo sapiens; and Arabidopsis halleri, Brassica oleracea 
(cabbage), Glycine max (soybean), Solanum lycopersicum 
(tomato), and Helianthus annuus (sunflower) as the second
ary species for Arabidopsis thaliana.

First, we estimated the evolutionary length of the 
branches between the primary species, H. sapiens and 
A. thaliana, and their corresponding secondary species. 
To do this, we constructed a set of proteins from the pri
mary species that have orthologs in all secondary species. 
Based on these sets, we calculated the average evolution
ary distance between the primary and secondary species, 

k, as dNk =
􏽐

i
dNi

k

number of proteins, where dNi
k is the non- 

synonymous evolutionary rate of the protein i calculated 
relative to the secondary species k, and the sum is over 
all proteins, i, in the set. Next, for each secondary species 
k, we calculated the relative evolutionary branch length 

αk = dNk􏽐
q

dNq
, where the sum is over all secondary species, 

q. Finally, for each protein i with orthologs in at least 
one secondary species, we estimated the mean protein- 

specific evolutionary rate as dN
i =
􏽐

k
dNi

k􏽐
k

αk
, where the sum 

in the numerator and denominator is over the secondary 
species, k, that have orthologs of the protein i. The result
ing protein-specific rates for orthologs in the primary 
species represent the fraction of non-synonymous substi
tutions along all evolutionary branches to the secondary 
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species, normalized by the relative evolutionary length of 
the branches for which orthologs were detected.

The usage of the mean protein-specific rates, dN
i
, for 

H. sapiens and A. thaliana toward multiple secondary spe
cies increased by ∼15% to 20% the number of proteins 
with estimated evolutionary rates. Specifically, dN

i 
was in

ferred for 18,634 human and 23,076 A. thaliana proteins, 
compared to 16,846 and 19,042 proteins, respectively, 
when using only Mus musculus and Brassica oleracea as 
orthologous species (Zhang and Yang 2015).

To quantify the strength of purifying selection, we used 
the ratio of non-synonymous to synonymous substitution 
rates, dN/dS. To that end, for each pair of primary and sec
ondary species, we calculated dN/dS values in the same 
way as dN, i.e. using orthologous proteins and the PAML 
package (Yang 1997). Since dN/dS values should not de
pend on the lengths of evolutionary branches and are simi
lar for different secondary species, we used the analysis of 
the median value for each gene across different pairs of pri
mary and secondary species.

Estimated evolutionary rates for each species are avail
able in supplementary table S6, Supplementary Material
online.

The polymorphism rate for human proteins was cal
culated as the number of non-synonymous protein- 
coding SNPs with frequencies greater than 1% in the 
1000 Genomes Project (The 1000 Genomes Project 
Consortium 2015) normalized by the protein length. 
The human polymorphism data was obtained from the 
dbSNP database (Sherry et al. 2001) (https://www.ncbi. 
nlm.nih.gov/snp/).

Expression—Evolutionary Rate Correlation (ER)
In the manuscript, we calculated the Expression— 
evolutionary Rate correlation (ER) as Spearman’s correl
ation coefficient between mRNA expression levels and 
protein evolutionary rates. We used Spearman’s correl
ation to avoid making any assumptions about the shape 
of the relationship between evolutionary rates and ex
pression. Additionally, Spearman’s correlation ensures 
that ER is invariant with respect to normalization and log- 
transformation of expression and evolutionary rate data. 
We note that all ER correlations calculated in this work 
are negative, indicating an anticorrelation between ex
pression and evolutionary rate. However, for visualization 
purposes, we primarily use the correlation strength, 
quantified as the absolute value of the ER correlation, | 
ER|. Cell-type and tissue-specific ER correlations for 
each considered dataset are available in supplementary 
table S2, Supplementary Material online.

Linear Regression Analysis of Multi-tissue 
Contribution to ER
The relationship between expression and evolutionary 
rate is non-linear (Fig. 2a, supplementary fig. S3, a to c, 
Supplementary Material online). Therefore, to explore 
the joint influence of expression profiles across multiple 

tissues on evolutionary rates without making any assump
tions about the shape of the ER relationship, we used rank- 
transformed expression values and rank-transformed 
evolutionary rates in the linear regression analysis. We then 
fitted a multivariable linear regression model based on ex
pression in all tissues and compared its predictive power 
with the regression model based on expression in neural tis
sues only. The explanatory power of these regression models 
for different species is available in supplementary table S1, 
Supplementary Material online.

Expression Breadth Across Tissues
The breadth of expression for a gene was defined as the 
number of tissues in which it was expressed above a certain 
threshold (Park and Choi 2010). We explored several pos
sible thresholds, namely 0, 0.1, 0.3, 1, 3, 10, 30, 100, 300, and 
1,000 TPM. We then selected, for each animal species in 
the analysis, the threshold that provided the strongest 
Spearman’s correlation between evolutionary rate and ex
pression breadth; the selected threshold was 10 TPM for H. 
sapiens, M. musculus, and D. melanogaster, and 30 TPM for 
C. elegans. The Spearman’s correlations between evolu
tionary rate and expression breadth are shown in 
supplementary table S1, Supplementary Material online.

Influence of Tissue-specific Genes on the ER 
Correlation
We defined the specificity of a particular gene to a tissue k 
as the z-score of its expression in tissue k relative to other 
tissues, z = x−μ

σ+epsilon, where x is the expression level of the 
gene in tissue k, μ and σ are the mean and standard devi
ation of the expression level of the gene in other tissues, 
and epsilon is a parameter equal to the minimum non-zero 
expression level in the transcriptome. Expression values 
were log10(x + 1) transformed before the analysis. To in
vestigate how well the expression of genes that are specif
ic to a given tissue correlates with evolutionary rates, 
we selected various fractions of genes (ranging from 
10% to 100%) with the highest specificity score to a given 
tissue and then used these genes to calculate the ER 
correlation for all tissues. This analysis was repeated for 
genes specific to each tissue (supplementary figs. S5 
and S6, Supplementary Material online).

We used a similar approach to calculate the overall gene 
specificity to neural tissues in animals and to growing 
tissues in plants. In this case, the gene specificity score 
was defined as z = μ1−μ2����������

σ2
1/n1+σ2

2/n2

√
+epsilon

, where μ1 and σ2
1 

are the mean and variance of the gene expression in neural 
tissues of animals or in fast-growing plant tissues, μ2 and σ2

2 
are the mean and variance of the gene expression in 
other tissues, n1 and n2 are the number of neural and non- 
neural tissues in animals or the number of fast- and slow- 
growing tissues in plants, and epsilon is a parameter 
with a value equal to the minimum non-zero gene expres
sion level in the transcriptome. Expression values were 
log10(x + 1) transformed before the analysis. Since in 
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plants the distinction between fast- and slow-growing tis
sues is not binary, we classified 20% of the tissues with the 
highest expression of growth markers as fast-growing and 
20% of the tissues with the lowest expression of growth 
markers as slow-growing. To evaluate the influence of 
neural-specific genes in animals and fast-growth-specific 
genes in plants on the ER correlation, we removed 10% 
of the most neural- or fast-growth genes from the analysis 
and recalculated the ER correlations (supplementary table 
S2, Supplementary Material online).

Influence of the Number of Expressed Genes on the 
ER Correlations
The number of expressed genes varies across tissues. To 
explore how this variability might contribute to the differ
ences in the strength of tissue-specific ER correlations we 
equalized the number of expressed genes across tissues. 
To that end, for each multi-tissue transcriptome, we iden
tified the tissue with the minimum number of non-zero 
expressed genes, n. For each other tissue, we then sorted 
the genes based on their expression levels and selected n 
genes, starting with the most highly expressed, and set ex
pression values for the other genes to zero. We then recal
culated the ER correlations across tissues using these 
modified expression profiles and compared them to the 
original ER correlations (supplementary table S2, 
Supplementary Material online).

Expression of Essential Genes Across Tissues
We used the data describing the fitness effects of ∼7,000 
knockouts for mouse genes obtained from the 
International Mouse Phenotyping Consortium (IMPC) 
database, available for download on 2022 April 18 
[Koscielny et al. 2014 (https://www.mousephenotype. 
org/about-impc/)]. We defined genes as essential if their 
knockout viability phenotypes were classified in the data
base as “lethal.” We calculated the fraction of essential 
genes expressed (at the level ≥1 TPM) in the mouse brain 
at different developmental stages; the results were not sen
sitive to the selected expression threshold (supplementary 
table S2, Supplementary Material online).

Gene Set Enrichment Analysis (GSEA)
Gene ontology (GO) annotations were obtained from the 
Molecular Signatures Database MSigDB:C5 v7.4 (release 
date 2021 March; Liberzon et al. 2011) for mouse genes, 
from the Arabidopsis Information Resource (TAIR) data
base (release date 2021 April 1; Berardini et al. 2015) for 
Arabidopsis genes, and from the AmiGo browser (release 
date 2021 February 1; Carbon et al. 2009) for fly, corn 
and soybean genes.

For GSEA analyses of single-cell transcriptomes, we main
tained consistency in the resolution of expression profiles 
across cell-type clusters by retaining the same number of 
non-zero expressed genes in each cell-type cluster. To achieve 
this, we sorted genes by their expression for each cell type 
and retained the top 10,000 most highly expressed genes 

for mouse and 7,000 genes for D. melanogaster. Expression 
of other genes was set to zero. We note that GSEA analyses 
performed on uncorrected expression data yielded very simi
lar sets of upregulated GO terms (supplementary table S4, 
Supplementary Material online).

We used the gene set enrichment analysis to identify the 
functional roles of genes with upregulated expression in cell 
types exhibiting stronger ER correlations. To this end, we 
first calculated, for each gene, the Pearson’s correlation co
efficient between its expression across different cell-type 
clusters and the strength of the cell-type-specific ER, 
r(Expression, |ER|). We then ranked the genes based on 
the strength of this correlation and performed a pre-ranked 
GSEA analysis (Subramanian et al. 2005), using the “pre
rank” module of GSEAPY (Fang et al. 2023), to identify 
GO terms enriched among genes associated with stronger 
ER. Following the default settings, we used in the GSEA ana
lysis GO terms containing ≥15, but ≤2,000 genes.

To verify the robustness of our results, we also utilized 
an alternative procedure to identify the association be
tween gene expression and ER strength. Specifically, we 
sorted cell types by the strength of ER and calculated, 
for each gene, the difference in its average expression levels 
between the top 10% and bottom 90% (or top 50% and 
bottom 50%) of the sorted cell types. We then performed 
a pre-ranked GSEA analysis based on the calculated differ
ential expression values.

We further investigated the GSEA results in mouse to 
understand whether the association between the ER 
strength and expression of genes from synaptic and other 
enriched GO terms was due to the direct influence of these 
genes on the ER correlation. To address this question, we 
removed all genes annotated with (i) the Synapse GO 
term (GO:0045202) or (ii) any of the significantly enriched 
GO terms (at FDR < 0.05). For each cell-type, we then re
calculated the Spearman’s correlation between evolution
ary rates and expression using the remaining genes, 
ERnoSynapse and ERnoEnriched, respectively. Next, we repeated 
the pre-ranked GSEA analysis, but this time the gene rank
ing (for all genes, including synaptic and associated 
with other enriched GO terms) was based on Pearson’s 
correlation between gene expression and the strength 
of ERnoSynapse or ERnoEnriched, r(Expression, |ERnoSynapse|) or 
r(Expression, |ERnoEnriched|), respectively.

The results of the GSEA analyses for all animals’ and 
plants’ datasets and corresponding controls are available 
in supplementary table S4, Supplementary Material online.

Hierarchical Clustering of Expression Samples
We performed hierarchical clustering of expression sam
ples for each plant species using the “hclust” function 
from the R package “stats” (R Core Team 2022). The 
distance between samples was calculated as one minus 
the squared Pearson’s correlation coefficient between 
corresponding expression profiles. We used the “ward.D2” 
agglomeration method for corn and the “complete” meth
od for Arabidopsis and soybean.
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Markers for Growth Stages in Plants
Marker genes for the division, elongation, and differenti
ation growth stages in Arabidopsis were taken from 
Huang and Schiefelbein (2015). For corn and soybean, 
we used orthologs of the Arabidopsis marker genes as 
markers for the corresponding growth stages. Ortholog 
annotations were obtained from the Ensembl database 
(Cunningham et al. 2022) via BioMart (Kinsella et al. 
2011), using the “one2any” homology and confidence level 
“1”. The average expression of genes from each growth 
stage was calculated after log10(x + 1) transformation of 
expression values. The final lists of marker genes for each 
plant species are available in supplementary table S7, 
Supplementary Material online.

Collection of Data on Enzymes’ Catalytic Rates
We extracted all available data on kcat and kcat/KM from 
the Brenda (Chang et al. 2021) (version of 2019 
September 3) and Sabio-RK (Wittig et al. 2018) 
(version of 2019 January 21) databases. Specifically, we 
downloaded from Brenda (https://www.brenda-enzymes. 
org/download.php) an easy-to-parse text file containing 
catalytic rates along with additional information about 
the entries, such as reaction EC numbers, protein 
Uniprot IDs, protein names and types, source organisms, 
and measurement temperatures. For Sabio-RK, we used 
the provided URL request interface to automatically 
download all kinetic constants and entries’ information. 
In addition, we obtained data on kcat for E. coli enzymes 
from the previously published and manually curated data
set (Davidi et al. 2016). We then applied several filters to 
exclude mutant enzymes, enzymes with macromolecular 
substrates or those involved in transmembrane transport, 
and multifunctional enzymes that catalyze multiple reac
tions with EC numbers differing by more than the last digit. 
In cases where multiple values of kcat or kcat/KM were avail
able for a given enzyme, for example, due to measurements 
with different substrates or measurements available in dif
ferent publications, we used the highest values of experi
mentally obtained kinetic constants.

For the final sets of enzymes from H. sapiens, A. thaliana, 
and E. coli, we manually curated the references where kcat, 
kcat/KM, and corresponding kmax

cat , and (kcat/Km)max (de
scribed in the next section) were published. We observed 
some discrepancies between the values given in the origin
al publications and the corresponding entries in the 
Brenda or Sabio-RK databases. The most common errors 
were due to incorrect transfer of units, for example, the 
usage of mM instead of μM or s−1 instead of min−1. All 
such cases were corrected in our dataset.

The complete dataset of catalytic rates for the enzymes 
used in this work is available in supplementary table S8, 
Supplementary Material online. Data on catalytic rates 
for enzymes from H. sapiens, A. thaliana, and E. coli, com
bined with their evolutionary rates and expression values 
are available in supplementary table S9, Supplementary 
Material online.

Normalization of Catalytic Rates to Estimate 
Functional Optimization
Following the previous approach (Davidi et al. 2018), to es
timate the level of functional optimization of the consid
ered enzymes we calculated the normalized catalytic 
rates, knorm

cat or (kcat/KM)norm. To that end, we divided the 
kinetic constants, kcat and kcat/KM, by the highest con
stants known for the corresponding reaction classes, kmax

cat 
and (kcat/KM)max. This normalization procedure allowed 
us to account for the substantial heterogeneity of kinetic 
constant values across different reaction classes due to 
the diverse chemistries of the catalyzed reactions. To per
form the normalization, we identified, for each reaction 
class (i.e. enzymes sharing all four digits of the EC classifi
cation), the highest catalytic rates measured across all 
database entries (including mutants and multifunctional 
enzymes), kmax

cat or (kcat/KM)max. To ensure accurate esti
mates of the maximum catalytic rate for a given reaction 
class, we included in the analysis only enzymes for which 
experimental measurements of catalytic rates were avail
able for at least 15 unique enzymes in the same reaction 
class (EC number); the results were not very sensitive to 
the value of this parameter.

Temperature Correction of the Measured Catalytic 
Rates
The majority of the catalytic rate constants in our dataset 
were measured at temperatures in the range of 20 to 40 °C, 
with the median at ∼30 °C. However, approximately 6% of 
the available kinetic measurements were performed at 
higher temperatures, up to 100 °C. Since the rates of cata
lyzed biochemical reactions are temperature-dependent 
according to Arrhenius’ law, we applied a temperature cor
rection to estimate the catalytic rates of the corresponding 
enzymes at 30 °C. We note that the exact dependence of 
the reaction rate on temperature depends on the activa
tion energy, which is specific to each catalyzed chemical re
action. However, a previous systematic analysis of 
temperature-dependent acceleration of biochemical reac
tions, catalyzed by more than 150 enzymes, demonstrated 
(Elias et al. 2014) that, on average, the values of kcat and 
kcat/KM increased by a factor of 1.8 for each 10 °C increase 
in temperature. To account for this trend, we scaled down 
all kcat and kcat/KM values experimentally measured at 
temperatures T > 40 °C using the following equation: 
k(30◦C) = k(T) · 1.8(T−30)/10, where k is the catalytic con
stant and T is the measurement temperature; we did not 
apply any adjustments to the catalytic rate constants mea
sured at T < 40 °C. In cases where the measurement tem
perature was not explicitly stated in the publication, we 
assumed that the measurements were performed at ambi
ent temperature and did not apply any temperature 
correction.

We note that temperature correction only affected the 
functional efficiency of 21 enzymes (9%) in the final sets for 
H. sapiens, A. thaliana, and E. coli. Moreover, functional ef
ficiencies calculated based on the uncorrected data 
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showed correlations with protein evolutionary rates and 
expression that were very similar to those observed in 
the temperature-corrected data (supplementary table 
S10, Supplementary Material online).

Multi-member EC Classes
Species’ genomes often encode several distinct enzymes 
that catalyze the same EC reaction. Among the sets of en
zymes with estimated functional efficiency, most reaction 
classes were represented by only one or two different pro
teins. However, for H. sapiens and A. thaliana, several EC 
classes were represented by multiple enzymes. These en
zymes usually had different expression levels, evolutionary 
rates, and catalytic efficiencies (supplementary table S9, 
Supplementary Material online). However, to assess the 
potential influence of multi-member EC classes on the 
KR correlation, we randomly subsampled the enzymes 
from the multi-member EC classes, retaining only two dif
ferent enzymes from each EC class with more than two 
protein members. For each of the 10,000 such random 
trials, we recalculated the KR correlation and the fraction 
of the ER correlation mediated by the KR correlation. 
Although this procedure reduced the number of enzymes 
by about 1/3, the KR correlation was significant in more 
than 99% of the reduced samples, and the median KR cor
relation coefficients and the fractions of ER explained by 
functional efficiency were similar to the results obtained 
from the complete enzyme sets (supplementary table 
S10, Supplementary Material online).

Unique and Shared Contributions of Protein 
Optimality and Expression to Explaining Protein 
Evolutionary Rates
We used semi-partial correlations (Abdi 2007) to investi
gate the unique and shared contributions of two inde
pendent variables, i.e. protein functional optimality and 
expression, to explain the variance of the dependent vari
able, protein evolutionary rates. To do this, the unique ef
fect of one independent variable x on the dependent 
variable z was calculated as the squared coefficient of 
the semi-partial correlation between them while control
ling for the other independent variable, y: r2

z(x.y). Similarly, 
the unique effect of the independent variable y on the 
dependent variable z was calculated as r2

z(y.x). The shared 
effect was calculated as the difference between the 
squared coefficient of the ordinary bivariate correlation, 
r2

z.x, and the squared coefficient of the semi-partial correl
ation r2

z(x.y). We used the function “partial_cor” with the 
method “spearman” from the Python package “pingouin” 
to calculate semi-partial correlations (Vallat 2018).

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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